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Stability and Change in Adult Intelligence: 1. Analysis
of Longitudinal Covariance Structures
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We address two questions of central interest in adult intellectual development: the equivalence of
psychometric tests’ measurement properties at different ages, and the stability of individual differences
in intelligence over time. We performed a series of longitudinal factor analyses using the LISREL
program to model longitudinal data from Schaie’s Seattle Longitudinal Study. The results indicate
complete invariance in the loadings of five subtests of Thurstone’s Primary Mental Abilities battery
on a general intelligence factor. Individual differences in general intelligence were highly stable over
14-year epochs, with standardized factor correlations averaging about .9 between adjacent 7-year
testing intervals. These results indicate that most individuals in this relatively select longitudinal
sample maintained their relative ordering in intelligence.

One of the central questions in adult development regards the
stability of adult intelligence—does intelligence decline with age,
and if so, what is the magnitude of individual differences in pat-
terns of change (e.g., Botwinick, 1977; Horn & Donaldson, 1980;
Schaie, 1983)? The debate in the literature on the development
of intelligence during adulthood has focused primarily on the
stability of mean levels of intelligence—is there indeed decline,
on average, on different intellectual abilities, and if so, what is
the magnitude of such decline (e.g., Baltes & Schaie, 1976; Horn
& Donaldson, 1976; Schaie & Hertzog, 1983)? The attention
paid to stability of mean levels of intelligence has perhaps diverted
the field from focusing on a different, critical—and in some senses
more critical—type of stability: stability of individual differences
in intelligence. How large are individual differences in magnitudes
of age changes in intelligence during the adult years? Some de-
velopmental psychologists have suggested that adult development
is characterized by increasing heterogeneity and by substantial
individual differences in patterns of age change in intelligence
and other cognitive capacities and skills (e.g., Baltes, Dittmann-
Kohli, & Dixon, 1984; Hertzog, 1985; Schaie, 1983). Enhance-
ment of optimal intellectual development through intervention
(e.g., Schaie & Willis, 1986) requires as a first step the identifi-
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cation of differential patterns of aging and the isolation of the
causes of such differences.

Measuring stability of individual differences in intelligence is
somewhat more complex than measuring mean level stability.
Although sequential sampling strategies using repeated, inde-
pendent cross-sectional samples can be used to assess mean level
stability (e.g., Schaie, 1977; Schaie & Hertzog, 1982), stability
of individual differences can only be addressed by following in-
dividuals in a longitudinal panel design. Cross-sectional designs
can only measure magnitudes of individual differences—as in-
dicated by the variances—at a single point in time. At any given
point in time, individual differences can be conceptualized as
being determined by an earlier individual differences distribution
and by subsequent individual differences in developmental change
(see Baltes, Reese, & Nesselroade, 1977). Only a longitudinal
design, by directly measuring change at the level of the individual,
can be used to estimate the proportion of individual differences
due to individual differences in change during preceding time
periods (see Hertzog, 1985; Nesselroade & Labouvie, 1985;
Schaie & Hertzog, 1985).

This study was designed to provide a careful and detailed ex-
amination of individual differences in intellectual change during
adulthood. It also focuses on a second, critical issue identified
by developmental methodologists regarding the assessment of
change over time in variables such as intelligence. The issue is
whether the constructs under study, and the measures of those
constructs, are actually isomorphic at different ages. Can we as-
sume that intelligence is the same construct at ages 25 and 75?
Even if intelligence is unchanging, or continuous (Kagan, 1980)
across the adult life span, is it the case that psychometric measures
of intelligence are equally reliable and valid as measures of in-
telligence at different ages? Baltes and Nesselroade (1970) iden-
tified this issue as one of measurement equivalence—can we as-
sume invariant measurement properties of empirical measures
at different parts of the life span (see also Eckensberger, 1973)?
As Baltes and Nesselroade indicated (see also Schaie, 1977; Schaie
& Hertzog, 1985), the optimal method for assessing measurement
equivalence is comparative factor analysis, in which the invari-
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ance of the factor structure of the psychometric abilities is as-
sessed. As discussed elsewhere (e.g., Cunningham, 1978; Schaie
& Hertzog, 1982, 1985), the best approach to the invariance
problem involves the use of confirmatory factor analytic methods
to test the hypothesis of age-related invariance in the factor
structure.

This is the first in a series of articles describing our use of
covariance structures methods to analyze patterns of change and
stability in adult intelligence using data from Schaie’s Seattle
Longitudinal Study (SLS). In this article we describe results from
a longitudinal factor model that may be used to assess (a) the
measurement equivalence of the Thurstone Primary Mental
Abilities battery used in the SLS and (b) the extent to which
individuals in the SLS vary in patterns of intellectual change
during the adult years. The Primary Mental Abilities test was
developed by Thurstone and Thurstone (1941, 1949) to measure
factorially pure, but intercorrelated, intellectual abilities. As-
sessment of factorial invariance and stability of individuals with
the Primary Mental Abilities is particularly relevant, given the
influence of Thurstone’s work on the field of psychometric in-
telligence. Our findings strongly support the measurement
equivalence of the Thurstone battery across much of the adult
life span. We also show that there is a surprising degree of stability
of individual differences in intelligence in participants from the
kind of long-term longitudinal sample obtained in the SLS.

Our conclusions are based on results from a set of relatively
complex longitudinal covariance structures models of the type
developed by Joreskog and co-workers (e.g., Joreskog & Sorbom,
1977). The longitudinal factor model developed by J Sreskog and
others (Joreskog, 1979; Joreskog & Sérbom, 1977) may be viewed
as a generalization of other longitudinal factor analysis (e.g.,
models by Corballis, 1973; Corballis & Traub, 1970). To set the
stage for our report, we must first summarize the methodological
features of these models and how their parameters may be used
to assess stability and change in individual differences over time
(see also Hertzog, in press; Horn & McArdle, 1980; Schaie &
Hertzog, 1985).

Let us assume that an investigator has collected multiple mea-
sures of one or more latent variables in a longitudinal design.
The measures may or may not be identical at each longitudinal
measurement occasion, although in the SLS the same measures
were collected at each time of measurement. The relations among
these variables must be represented by the covariance matrix of
the observed variables (a correlation matrix should rot be ana-
lyzed; Joreskog & Sérbom, 1977). Given this kind of replicated
longitudinal design, confirmatory factor analysis may be used to
specify and estimate a longitudinal factor model with the follow-
ing features.

First, the same factor structure is hypothesized to exist at each
longitudinal measurement occasion. This structure is represented
in the factor pattern matrix, which contains the regression coef-
ficients mapping variables on factors (factor loadings). In the
analysis we report here, a general intelligence (g) factor was mod-
eled at each longitudinal occasion. The factors thus specified in
a longitudinal factor model are often termed occasion-specific
factors.! In addition to the factor pattern matrix, the basic lon-
gitudinal model includes a factor covariance matrix, describing
the relations among the factors within and between longitudinal
occasions, and a residual covariance matrix. The primary pa-
rameters of interest are the factor loadings and the factor co-

variance matrix. The first step involves evaluation of the mea-
surement equivalence of the observed variables. Measurement
equivalence may be assessed by (a) evaluating the adequacy of
the model postulating isomorphic occasion-specific factors (i.e.,
the same number of factors with the same configuration of factor
loadings at each longitudinal occasion) and (b) determining the
plausibility of a model constraining these factor loadings to be
equal (invariant) over all longitudinal occasions. These factor
loadings are raw-score (unstandardized) regression coefficients,
and invariance of these coefficients (sometimes termed metric
invariance; see Horn, McArdle, & Mason, 1984) implies un-
changing relations of the observed variables to the factors (Mer-
edith, 1964; Schaie & Hertzog, 1985). Procedures for assessing
the fit of these models are described later in the article.

Given that the hypothesis of measurement equivalence is ten-
able, the second step in the longitudinal analysis shifts attention
to the factor covariance matrix. The diagonal elements of this
matrix—the factor variances—reflect the magnitude of individual
differences at each longitudinal occasion. Changes in factor vari-
ances would therefore reflect changes in the overall magnitude
of individual differences over time. The stability of individual
differences across longitudinal occasions is reflected in the co-
variances of factors with themselves over time. If the covariance
of a factor at Time 1 with itself at Time 2 is large and positive,
then individuals are preserving their relative order about the factor
mean between Times 1 and 2. On the other hand, a zero or near
zero covariance would reflect a high degree of flux in individual
differences between Times 1 and 2. As shown by Baltes, Reese,
and Nesselroade (1977), a zero covariance would be consistent
with large individual differences in the patterns of developmental
change during that time period.

Given that the SLS is a sequential study, in which multiple
longitudinal samples have been followed over time (see Schaie,
1979, 1983), it is possible to expand the longitudinal model to
consider longitudinal changes in multiple age groups. The ex-
tension of the model to multiple group analysis has been described
by Joreskog and Sérbom (1980), and is relatively straightforward.
The advantage of a multiple groups analysis in the present context
is that it allows us to address the issue of age invariance in factor
structure both longitudinally, within a group of individuals, and
comparatively, across multiple age groups. The longitudinal
samples we analyze include adults of a wide span of chronological
ages who have been tested three times over a 14-year period.
These multiple samples allow us to examine longitudinal in-
variance in factor structure over 14-year epochs, while also ex-
amining factorial invariance over the adult life-span by comparing
the factor structures of multiple age groups.

Method
Subjects

The subjects in this study were participants in the Seattle Longitudinal
Study conducted by Schaie and associates (Schaie, 1979, 1983). The pop-
ulation consisted of members of a health maintenance organization
(HMO) in the greater Seattle, Washington, area. To minimize the prob-

! The model can be extended without difficulty to include different
numbers of common factors at each longitudinal occasion, but that ap-
proach is unnecessary in our analysis.
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ability of selection differences over time, the population was defined as
all members of the organization as of 1956, the initial year of the longi-
tudinal study. All participants were unpaid volunteers who answered
questionnaires and took part in a psychometric testing conducted in a
single session. The volunteers were recruited from a randomly drawn
sampling frame of the HMO membership, stratified by age and gender.
The participants were adults spanning the age range from 20 through 74,
at first test, and representing a range of socioeconomic and ethnic groups.
However, probability sampling was not employed, and the sample was
therefore not necessarily representative of the entire HMO population.
As was generally true of the Seattle population circa 1956, the sample is
predominantly Caucasian and, reflecting the membership of the HMO,
contains a higher proportion of middle- and upperincome individuals
than did the total Seattle population. Further details on the population
and sampling procedures may be found in Schaie (1979, 1983).

Sequential Sampling Design

The longitudinal samples studied here are a subset of the sequential
samples collected in the SLS. Briefly, the design of the SLS consisted of
repeated sampling from the population at 7-year intervals, beginning in
1956 and continuing through 1984. Each year of testing, a new cross-
sectional sample was drawn from the population, and all previously tested
individuals were contacted and recruited for participation in the longi-
tudinal panel. Thus, each independent cross-sectional sample was trans-
formed into a multiple-cohort longitudinal sequence (Baltes et al., 1977)
by repeated testing of the same individuals. We restrict our analysis here
to two 14-year longitudinal samples: Sample 1 consists of 162 subjects
tested in 1956, 1963, and 1970, and Sample 2, 250 subjects tested in
1963, 1970, and 1977. The data from the two longitudinal sequences
were partitioned into a hybrid sequential data matrix given in Table 1.
This partition created three age groups (young, middle aged, and old)
for simuitaneous analysis. These age groups were formed under the as-
sumption of no cohort differences in factor structure. Although it would
have been desirable to test for both age-related and cohort-related mea-
surement equivalence, sample sizes were insufficient for such purposes.
Age-related changes in factor structure seemed more likely, a priori, and
earlier work supported the assumption of no cohort differences in factor
structure (Cunningham & Birren, 1980). As can be seen from Table 1,
data from different birth cohorts were pooled to obtain the age groups.

Variables

As part of a larger psychometric battery, all of the subjects were ad-
ministered the 1948 version of the SRA (Science Research Associates)
Primary Mental Abilities (PMA) test, Form AM 11-17 (Thurstone &
Thurstone, 1949). The 1948 PMA includes five subtests, all of which are
timed and have significant speed components in adult samples (Schaie,
Rosenthal, & Perlman, 1953). They are (a) Verbal Meaning—a test of
recognition vocabulary, (b) Space-—a test of spatial orientation requiring
mental rotation in a two-dimensional plane, (c) Reasoning—a test of
inductive reasoning requiring recognition and extrapolation of patterns
of letter sequences, (d) Number—a test of the ability to solve simple two-
column addition problems quickly and accurately, and (¢) Word
Fluency—a test of the ability to retrieve words from semantic memory
according to an arbitrary syntactic rule. Scoring protocols followed the
PMA manual: Verbal Meaning and Reasoning are scored in terms of the
number of correct responses; Space and Number are scored by subtracting
commission errors from the total number correct; and Word Fluency is
scored by tallying the total of unique, admissible words generated.

Statistical Procedures

All of the models described were tested using the LISREL V program
of Joreskog and Sérbom (1981). The analyses reported in this article

Table 1
Reparameterized Sequential Sample for
Multiple Group Analysis

Mean age
Cohort

Sample (mean birth year) 0, 0, 0,3 n
Group 1 30, 37, 44 109
1 1931 25, 32, 39 21
1 1924 32, 39, 46 26
2 1938 25, 32, 39 22
2 1931 32, 39, 46 40
Group 2 42, 49, 56 160
1 1917 39, 46, 53 27
1 1910 46, 53, 60 32

2 1924 39, 46, 53 51
2 1917 46, 53, 60 50
Group 3 58, 65, 72 143
1903 53, 60, 67 28
1 1896 60, 67, 74 15
i 1889 67, 74, 81 13
2 1910 53, 60, 67 48
2 1903 60, 67, 74 18

2 1896 67, 74, 81 21

Note. 0, = first occasion of measurement; 0, = second occasion of mea-
surement; 0; = third occasion of measurement.

used only one of LISREL’s two-factor analysis measurement models. In
LISREL notation, the measurement model may be specified as

X = A + 6, (1)

which in matrix form specifies a g-order vector of observed variables, x,
as a function of their regression on » latent variables (factors) in £, with
regression residuals 8. The ¢ X n matrix A contains the regression coef-
ficients (factor loadings). Equation 1 implies that the covariance matrix
of the observed variables in the populations, £, may be expressed as

T = APA' + 6, (2)

where A is as before, ® is the covariance matrix of the £ and © is the
covariance matrix of the 8. Equation 2 is a restricted factor analysis model
that can be extended to multiple groups (Joreskog, 1971).

The parameters of LISREL's restricted factor analysis model are esti-
mated by the method of maximum likelihood, provided that a unique
solution to the parameters has been defined by placing a sufficient number
of restrictions on the equations in Equation 2 to identify the remaining
unknowns. Restrictions are specified by either (a) fixing parameters to a
known value a priori (e.g., requiring that a variable is unrelated to a
factor by fixing its regression in A to 0) or (b) constraining a set of two
or more parameters to be equal. The equality constraints may be applied
to any subset of parameters within or between groups, which provides
the basis for specifying a model requiring invariant factor structures be-
tween multiple groups or across longitudinal occasions (as needed, for
example, to test the hypothesis of measurement equivalence). Overiden-
tified models (which have more restrictions than are necessary to identify
the model parameters) place restrictions on the hypothesized form of =,
which may be used to test the goodness of fit of the model to the data
using the likelihood test statistic. Differences in chi-square between nested
models (models that have the same specification, with additional restric-
tions in one model) may be used to test the null hypothesis that the
restrictions (e.g., constrained equal factor loadings) are true in the pop-
ulation.

In multiple group, longitudinal factor analysis, it is necessary to estimate
factor models using covariance metric and sample covariance matrices
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rather than to analyze separately standardized correlation matrices.
Standardization could obscure invariant factor structures because of group
differences in observed variances (Joreskog, 1971), and would not allow
evaluation of longitudinal changes in factor variances. To estimate raw
score factor pattern weights and factor variances, one must identify the
metric of the factors by fixing a single regression in each column of A to
a constant (conveniently, 1.0), and then interpret results while considering
the metric of latent and observed variables. The analyses reported here
do so. Nevertheless, as standardized factor loadings (etc.) are easier to
interpret, we provide parameter estimates that have been rescaled to a
quasi-standardized metric, using a SAS PROC MATRIX program for scaling
longitudinal factor analyses.? This rescaling preserves longitudinal con-
straints on parameter estimates but returns scaled values for factor loadings
that are similar to standardized factor loadings. We also report maximum
likelihood estimates and standard errors for certain models so that the
reader may evaluate (a) a null hypothesis that each parameter is equal to
zero, or (b) that group differences in unconstrained parameters are sta-
tistically reliable. In general, parameters that exceed their standard errors
by a ratio of 2:1 are reliably different from zero at a 5% (per comparison)
alpha level.

Results

The longitudinal models we estimate are designed to test the
properties of the second-order general intelligence factor (g) from
the PMA identified by Thurstone and Thurstone (1941). A first
step was to determine that the g factor was an adequate repre-
sentation of the covariance structure of the five PMA subtests.
Bechtoldt (1974) and Corballis and Traub (1970) worked with a
two-factor representation of the PMA subtests, although Bech-
toldt’s work included an additional memory variable that was
not included in the 1948 PMA, and Corballis and Traub’s two-
factor model appeared to produce a very weak second factor.
Nevertheless, we considered it necessary to evaluate the suffi-
ciency of the g factor model before proceeding to longitudinal
analysis. To do so, we used an exploratory factor analysis of all
first-occasion cross-sectional data from the SLS (N = 2,202) to
estimate an unrestricted maximum likelihood factor solution.
The results for the one-factor model clearly indicated that the g
factor sufficiently accounted for the covariance structure, x2(5,
N =2,202) = 6.18, p < .25; Tucker-Lewis reliability = .997.

Longitudinal Model: Sample 1

Prior to analyzing the multiple age groups, we first analyzed
the longitudinal factor model for the entire Sample 1. This anal-
ysis permitted us to evaluate the structural model prior to en-
gaging in the more complex multiple group models reported
later in the article. The basic occasion-specific model is depicted
in Figure 1. The g factor was specified at each longitudinal oc-
casion. The metric of g was defined by fixing the loading of
Reasoning on g to 1.0. The remaining four factor loadings at
each occasion were freely estimated, but were constrained to be
equal across longitudinal occasions. By design, the loadings of
all of the other variables (e.g., Verbal Meaning at Time 3 on g
at Time 1) were fixed at 0. The factor covariance matrix was
freely estimated, and the residual covariance matrix was specified
as a diagonal matrix of unique variances.

We hypothesized in advance that this model would not fit the
data because of the diagonal specification for the residual co-
variance matrix. It is well-known that longitudinal factor models
of the type we are working with are likely to require what has

been termed autocorrelated residuals (Sérbom, 1975; Wiley &
Wiley, 1970). That is, given that it is likely that the occasion-
specific factors will not account for all the reliable variance in
the observed variables, then it is plausible to expect that the
residuals (specific components) for an observed variable will cor-
relate over time. In other words, we expected a residual covariance
between the residual for Verbal Meaning at Time 1 and the Verbal
Meaning residual at Time 2, a residual covariance between the
Time 1 Space residual and the Time 2 Space residual, and so
on. This residual pattern was especially likely, given that we are
estimating a second-order g factor, as in this case the residual
will include variance in the primary ability not accounted for
by g. In fact, one would expect from the literature on abilities
that the communalities for variables like Space and Number
determined by g would be relatively small.

The initial model, denoted 0,, specifying a diagonal matrix
of unique variances provided an exceptionally poor fit to the
data (see Table 2). The poor fit was underscored by the fact that
the estimated factor covariances were greater than the corre-
sponding factor variances (which implies the logical absurdity
of correlations greater than 1). We therefore estimated Model
0,, specifying autocorrelated residuals in the residual covariance
matrix. The improvement in fit was substantial, change in x(15,
N =162) = 898.64, p < .001. Indeed, the overall chi-square test
statistic was no longer significant, and the normed fit index was
.96, indicating that nearly all the covariance in the sample data
matrix was accounted for by the model.

At this point, our interest shifted to testing hypotheses re-
garding cross-occasion invariance in the parameter matrices. The
principal hypothesis of interest with respect to measurement
equivalence involved the invariance of the raw-score factor pat-
tern weights (factor loadings) in A. Model 0; relaxed the con-
straint that the factor pattern weights be equal across occasions.
The difference in fit was nonsignificant, indicating that the hy-
pothesis of equal weights could not be rejected.

Given invariant factor pattern weights, it was meaningful to
ask whether the factor variances were stationary over time, in-
dicating consistency in the magnitude of individual differences
on g. Model 0, tested this hypothesis by constraining the diagonal
elements of the factor covariance matrix to be equal across lon-
gitudinal occasions. This hypothesis was rejected (see Table 2).
Thus we concluded that there were changes in the magnitude of
individual differences over occasions. We were also able to reject
the null hypothesis that the factor covariances were equal (see
Model 05 of Table 2).

Next, our attention turned to the parameters in the residual
covariance matrix. Our first hypothesis was that the residual co-
variances could be constrained equal over occasions. This hy-
pothesis, if tenable, would suggest a high degree of stability of
individual differences in the ability-specific residual components.
As can be seen in Table 2, Model 0, imposing the equality con-
straints on the residual covariances, did not fit worse than the
Model 03, indicating that the hypothesis of equal covariances

2 Briefly, the scaling is accomplished by pooling estimated latent vari-
ances and estimated observed variances to obtain scaling matrices. Pooling
is done over multiple groups, as in Joreskog (1971), and also over lon-
gitudinal occasions. A set of scaling equations and a listing of the scaling
program is available from the first author on request.
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Figure 1. Initial longitudinal factor model specifying general intelligence factor (g) at each of three longjtudinal
occasions. (Subsequent models include covariances among corresponding residuals [e.g., §,, &, 811] over

time.)

could not be rejected. Finally, we tested the hypothesis of lon-
gitudinal invariance in the residual variances. This hypothesis
stipulates that longitudinal changes in the variances of the ob-
served variables could be attributed to changes in g factor vari-
ance alone. This model, labeled 0, in Table 2, was rejected as
an equivalent representation to Model 0s. We concluded that
there were occasion-specific differences in the unique variances
as well as in the factor variances.

The factor loadings their associated standard errors of the ac-

cepted model (0) are given in Table 3. All factor loadings are
significant, but the rescaled factor loadings for Verbal Meaning
and Reasoning are clearly larger than the rest. This pattern is
consistent with the factor analytic literature on second-order
ability factors (e.g., Horn, 1978), and parallels the findings of
Thurstone and Thurstone (1941).

This pattern is also reflected in the standardized residual vari-
ances, where the smallest residuals (largest communalities) are
associated with Verbal Meaning and Reasoning. Note also the

Table 2
Goodness-of-Fit Statistics for Alternative Longitudinal Models

Model x? df P P Comparison Ax? Adf D Ap
0,(A, =, diag o) 985.84 95 .000 574 —_ — — —_ —_
0x(A =, cov ©9) 87.20 80 27 962 0,-0, 898.64 15 < .001 .388
03(A, #) 82.98 72 17 964 0,-0; 4.22 8 ns .002
04(A; =, diag &, =°) 112,90 82 013 951 04~0, 25.70 2 <.001 011
0s(A; = @, =) 121.78 84 005 947 05-0,4 8.88 2 < .05 .004
Os(A; =, cov O =8) 97.16 90 .28 958 060, 9.96 10 ns .004
0:(A, = ©, =M 129.21 100 .026 944 0,-05 32.05 10 < .05 014

* Bentler-Bonett normed fit index.

® Indicates nonzero factor pattern weights in A constrained to be equal over time (t).

¢ Indicates the residuals in © specified as uncorrelated (see text).

¢ Indicates autocorrelated residuals in O, This specification was continued in Models 03-0,, as well.

© Indicates factor variances in ¢ constrained to be equal over time.

fIndicates factor covariances constrained equal, and factor variances constrained equal over time.

& Indicates covariances among residuals constrained equal over time.

" Indicates residual variances constrained equal over time, and residual covariances constrained equal over time.
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Factor Loadings and Residual Variances for the Longitudinal Factor Model (0s)

Factor loadings Residual variances"

Test LISREL estimates® Rescaled loadings Time 1 Time 2 Time 3
Verbal Meaning 1.540 (0.100) .838 318 .348 240
Space 0.994 (0.109) .556 751 .666 652
Reasoning 1.00° (—) 878 269 274 162
Number 0.928 (0.108) 518 .760 763 674
Word Fluency 1.108 (0.133) .520 774 735 682

* Calculated as the proportion of residual variance (estimated) to total variance (estimated); 1 — (residual variance) =

b Standard errors in parentheses.
¢ Fixed parameter.

longitudinal decreases in residual variances for all variables, sug-
gesting that the communalities of the primary ability variables
determined by g increase over time. The high degree of stability
in individual differences is reflected in the high factor covariances,
which are provided in Table 4. Standardized, these covariances
reflect correlations of greater than .9 between g at each longi-
tudinal occasion. Clearly, there is not much change in the relative
ordering of individuals on general intelligence over the 14-year
period.

The results of this model were successfully cross validated in
Sample 2. Rather than report these results, we move immediately
to discussion of the multiple group analysis.

Multiple Group Analysis

The analyses in Samples 1 and 2 suggest almost perfect stability
of individual differences in intelligence, both at the g factor and
test-specific component levels. These analyses combined indi-
viduals spanning the adult life span, however, and it was possible
that the wide age range served to maximize the apparent stability
of individual differences. In particular, it was possible that dif-
ferential change in the late-middle-age/old-age ranges was ob-
scured by the high degree of stability across most of the adult
life span. The multiple group analyses were designed to examine
the stability of individual differences in more homogeneous age
ranges. They also afforded us the opportunity of looking at age
group differences in the factor analysis parameters. One might
expect that there would be a greater opportunity for age group
differences in factor loadings—given the age ranges spanned by
our groups—than for longitudinal age changes.

We began by testing the equality of the observed covariance
matrices across the three age groups. Box’s test suggested non-

Table 4
Factor Covariance Matrix (and Correlations) for the
Longitudinal Factor Model (Os)

Factor & &2 4]
& 28.624 (4.137) 0.945 0917
J:) 27.723 (3.983) 30.062 (4.338) 0.972
& 31.776 (4.531) 34.528 (4.787) 41.938 (5.728)

Note. g, is the general factor at Time 1, g is the general factor at Time
2, g is the general factor at Time 3. Standard errors in parentheses.
Values above the diagonal are standardized factor correlations.

the communality.

homogeneous covariance matrices, M = 402.77, F(240, ) =
1.59, p < .0001. This result made it likely that there indeed were
group differences in some of the factor analytic parameters.

The longitudinal factor model investigated in Sample 1 was
used in the multiple group analyses. However, rather than pre-
sume the equivalence of residual covariances (as in Model O
above) we chose to begin with these parameters unconstrained.
Our rationale was that group differences in the residual covari-
ance structure might have been obscured in the single sample
analysis. Rather than presume the constraints, we chose to eval-
uate them anew in the multiple group model.

Our basic model, then, posited the specification of Model 03
of the Sample 1 analyses: an occasion-specific g factor (with no
longitudinal constraints on the factor loadings), a freely estimated
factor covariance matrix, and a residual covariance matrix with
free unique variances and autocorrelated residual covariances.
This model was specified in each of the three age groups, with
no additional constraints on the parameters across the groups.
The model was therefore equivalent to running the longitudinal
factor model separately in the three groups.

As can be seen from the first entry in Table 5, this model
denoted M,, provided a relatively good fit to the data, allowing
us to conclude that it was a reasonable representation of the
covariance matrices in each group. We therefore proceeded to
test for invariance in the g factor loadings. Separate tests of the
equality of the factor loadings across age groups (Model M;) and
longitudinally across occasions (Model M3) did not fit worse than
the model with no constraints on the factor loadings (see Table
5). For both tests, the combined change in chi-square was actually
just less than the change in degrees of freedom, x*(32,
N = 412) = 29.82, ns. We therefore concluded that the g factor
loadings demonstrated complete age equivalence—Dbeing invari-
ant both longitudinally and between age groups.

Our next set of models examined invariance in the factor co-
variance matrix. Model My, requiring age group equivalence in
the factor covariances matrix (both variances and covariances),
significantly degraded the fit to the data, requiring rejection of
the null hypothesis of age group equivalence. We next tested a
less restrictive model, positing group equivalence in factor vari-
ances but not in covariances. This model (M;) was also rejected.
Finally, Model Mg, placing no group constraints on the variances
but positing longitudinal equality of variances within each group,
was also rejected by the data (see Table 5). We should note that
none of these models greatly degraded the fit, as judged by the
normed fit index change of .01 or less (see Bentler & Bonett,
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Table §
Goodness-of-Fit Statistics for Models With Multiple Groups

Model x? df p p° Comparison Ax? Adf P Ap
M, (all free)® 257.85 216 027 951 — — — — —_
My(Aq =) 284.24 240 .026 946 M,-M, 26.39 24 ns 005
M;(A, =9) 287.68 248 .042 945 M;-M, 3.44 8 ns .001
My(¢; =9) 329.65 260 .002 937 MM, 41.97 12 < .01 .008
My(varg, =) 310.68 254 .004 941 M-M; 23.00 6 < .01 .004
Mg(varg, =8) 301.28 254 .022 943 M¢-M; 14.00 6 < .05 002
M#6, =) _ 458.85 308 .000 913 M:-M; 171.17 60 < .001 .032
M;(covO, =) 331.77 278 015 937 Mg-M; 44.09 30 < .05 .008

* Bentler-Bonett normed fit index.
® Indicates no between-groups equality constraints among parameters.
¢ Indicates factor loadings constrained equal between groups.

¢ Indicates factor loadings constrained equal between groups (as in M) and constrained equal over time (this specification maintained in Models

~Mj).

¢ Indicates factor covariance matrices constrained equal between groups.

TIndicates factor variances constrained equal over groups.

® Indicates factor variances constrained equal over time in each of the groups.

" Indicates entire residual covariance matrix constrained equal over groups.

" Indicates residual covariances for test-specific components constrained equal over time.

1980). Nevertheless, the loss of fit, judged from the likelihood
ratio chi-square test, was significant. These results indicated that
the factor covariance matrices should neither be taken to be sta-
tionary over time nor equivalent across age groups.

Finally, we pursued the residual covariance structure to assess
the stability of the residual variances and covariances across time.
A preliminary model, My, specified group invariance in all three
parameter matrices (A, &, and ©). Compared to model M, this
model tests the age group equivalence of the residual covariance
matrix. The hypothesis was convincingly rejected. Our next step
was to evaluate the plausibility of a model constraining the re-
sidual covariances to be equal between different measurement
occasions (as was the case for Model Og in the single sample
analysis). Model M; placed these constraints on the residuals.
The loss of fit was marginally significant at the 95% confidence
level. We concluded that the model specifying equal covariances
had missed the mark, but not by much. Thus, unlike Model 0Os,
we could not treat the residual covariances as invariant over
longitudinal occasions in the multiple group analysis. Apparently,
both the residual variances and covariances differed by group
and over longitudinal occasions, although the loss of fit due to
group constraints was clearly much greater than the loss due to
fitting invariant residual covariances over longitudinal occasions
in each of the groups separately.

An alternative method for approaching stability in the residual
covariances is by specification of a model positing both occasion-
specific and test-specific factors (e.g., J Oreskog & Sorbom, 1977).
Figure 2 depicts the factor pattern matrix (A) associated with a
combined occasion-specific and test-specific factor model for
these data. A given variable loads both on the general factor and
its own test-specific factor (i.e., a Verbal Meaning factor, a Space
factor, and so on). This parameterization of the residual covari-
ances is plausible if one argues for a special relation among the
residuals over time—a first order autoregressive structure (see
Joreskog & Sérbom, 1977). Addition of test-specific factors places
no additional restrictions on the residual covariances, given that
there are only three occasions of measurement (with more oc-

casions, specification that the residual covariances form a single
common factor may not fit the residual covariance structure).
The advantage of the test-specific factor representation is that it
enables one to separately estimate components of variance as-
sociated with g, stable variance in the primary ability, and a
residual consisting of unstable variance plus measurement error
(see Hertzog, in press).

We reestimated model M; (invariant factor loadings only) with
test-specific factors. The parameter estimates and standard errors
are provided in Tables 6 and 7. Given the fact that the hypothesis
of invariant g factor loadings had been found plausible, we were
entitled to assume measurement equivalence and to evaluate the
remaining parameter estimates with respect to the issue of sta-
bility and change in intelligence. Several points of interest re-
garding the stability of individual differences emerged. First, the
factor covariances were again extremely high, indicating a great
degree of stability in individual differences in g over the 14-year
interval for all three age groups. Standardized, these factor cor-
relations are approximately .9 (or greater) for all groups (see
Table 7).

Table 8 summarizes the stability of individual differences by
reporting the correlations, r2, and the estimated autoregressive
coefficients predicting g from the previous longitudinal occasion.
As can be seen from Table 9, the 72 is larger for g, to g, in all
groups, accounting for 92% of the variance in g; in both the
middle-aged and old groups. The predominance of stability is
underscored by the regression coefficients reported in Table 9.
As suggested by Kessler and Greenberg (1981), we have expressed
the raw-score slope coefficients in terms of the stability and, as
given in the last column of Table 9, the regression of the change
scores on initial scores (€.g., the regression of g;~g, on g,). This
latter coefficient, if negative, suggests regression to the mean; if
positive, it suggests increasing differences between individuals
that covary with initial differences. Table 6 shows that the raw-
score slopes were very near 1.0 (suggesting high stability) and
that the change slopes were near zero (suggesting little change
variance predictable from initial scores). In both the middie-
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Figure 2. Factor pattern matrix for model including occasion-specific and test-specific factors.
(0’s and 1’s are fixed parameters; \'s are estimated by the model.)

aged and old groups, the change slopes were slightly negative for
£ and g, suggesting slight regression to the mean, and slightly
positive from g, to g3, suggesting some egression from the mean
(the rich getting richer, the poor poorer, as it were). In the young
group, the stabilities were lower, albeit still impressively large,
and the regression to the mean was consistent across time inter-
vals.

The patterns of stability and change identified in the regression
coefficients were mirrored in the factor variances, which exhibited
different patterns of change across each of the groups. Factor
variances decreased in the young group, but showed reliable in-
creases from the second to the third occasion of measurement
in both the middle-aged and old groups. This increase in g vari-
ance was consistent with the regression from the mean suggested
from the regression coefficients. The decreases in variance and
the regression to the mean pattern in the young group may reflect
the mild ceiling effects on Verbal Meaning and Reasoning that
we have observed in the youngest age groups in the SLS longi-
tudinal samples.

Third, factor variances varied in magnitude between the age
groups. The older group was generally more heterogeneous (had
greater individual differences in g) than were the young and mid-
dle-aged groups. Taken together, these results suggested that al-
though there was significant stability of individual differences in

all age groups, the old group showed an interesting pattern of
(a) greater variability in g at initial measurement and (b) in-
creasing variability over time.?

An alternative way of looking at stability is the decomposition
of variance in the model including both occasion-specific and
test-specific factors. As can be seen in Table 9, the preponderance
of g variance at the second and third occasions of measurement
is stable variance predicted by individual differences at the prior
measurement occasion. Given that we were studying the second-
order g factor, it is relevant to ask about the stability of the residual
components, reflecting the five primary ability factors from the
PMA. Table 9 reports the decomposition of variance on each of
the 15 observed variables for each group into proportions of (a)
g-related variance, (b) stable test-specific variance, and () residual
variance. The g-related variance components are actually the
communalities of the observed variables with respect to the g

3 One concern we had was that the patterns of factor variances might
be due to the different age span for the oldest group (see Table 1). We
therefore reanalyzed the data, using only the two oldest cohorts in Samples
1 and 2 to form a smaller old group. The redefinition of the old group
did not eliminate the higher variances in g for the old, but did attenuate
the longitudinal increases in variance. This analysis is discussed in more
detail in the second article in this series (Hertzog & Schaie, 1986).
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Table 6
Factor Loadings for Model With Occasion-Specific (g} and Test-Specific Factors
Test Test Test
Variable g g*® (Young)® (Middle aged)® (Oldy

Vv, 1.659 (.098) 767 1.032 (.129) 0.921 (.122) 0.650 (.193)
S, 0.948 (.087) 438 1.001 (.084) 0.908 (.107) 1.136 (.208)
R, 1.000* — 777 0.752 (.174) 1.120 (.151) 0.708 (.199)
N; 1.463 (.106) .588 1.005 (.086) 0.962 (.058) 0.935 (.084)
W, 1.340 (.118) 485 0.667 (.102) 1.049 (.102) 1.046 (.104)
Vv, 1.659 (.098) 767 1.000* — 1.000* — 1.000* —
S; 0.948 (.087) 438 1.000* — 1.000* — 1.000* —
R, 1.000* — 177 1.000* — 1.000* — 1.000* —
N, 1.463 (.106) .588 1.000* — 1.000* — 1.000* —
W, 1.340 (.118) 485 1.000* — 1.000* — 1.000* —
V; 1.659 (.098) 767 0.971 (.120) 0.820 (.117) 1.042 (.323)
S, 0.948 (.087) 438 0.965 (.089) 0.770 (.095) 1.130 (.211)
R; 1.000* — 77 0.920 (.208) 1.006 (.133) 0.740 (.196)
N3 1.463 (.106) 588 0.970 (.080) 0.868 (.053) 0.786 (.074)
W; 1.340 (.118) .485 0.988 (.126) 0.925 (.086) 0.928 (.092)

Note. Standard errors are in parentheses. Asterisks denote fixed parameters. Subscripts on variables indicate longitudinal occasion (1 = Time 1, 2 =

Time 2, 3 = Time 3). V = Verbal Meaning; S = Space; R = Reasoning; N = Number; W = Word Fluency.
2 Factor loadings for occasion-specific general factor (g). Estimates were constrained equal across the 3 longitudinal occasions.

® Rescaled general factor loadings.
¢ Test-specific factor loadings for each age group.

factor. The variance associated with the test-specific factor rep-
resents stable variance across occasions specific to the primary
ability. The residual variance represents a combination of mea-
surement error variance and unstable specific variance (the two
components cannot be disentangled in this analysis). There are
several points of interest in Table 9. First, the communalities of
the g factor increased substantially in the old group relative to
the young and middle-aged groups (and showed a tendency to
increase over time longitudinally as well). Thus g determines
more of the variance of the observed measures in the old than
in the young. Second, those variables with the lowest communal-
ities for g (Space, Number, Word Fluency) show very high levels

Table 7
Factor Covariance Matrices for Occasion-Specific
Factors in Each Age Group

Factor & &2 &3
Young
& 15.048 (2.868) 0.887 0.930
& 11.896 (2.409) 11.959 (2.421) 0.933
&3 11.951 (2.365) 10.690 (2.179) 10.970 (2.257)
Middle aged
& 16.797 (2.691) 0.927 0.960
& 16.204 (2.549) 16.761 (2.652) 0.959
2 16.786 (2.607) 16.760 (2.591) 18.204 (2.798)
old
& 23.546 (3.595) 0.944 0.885
2 22.405 (3.427) 23.941 (3.713) 0.959
Je) 23.442 (3.598) 25.589 (3.814) 29.769 (4.335)

Note. Standard errors are in parentheses. Values above the diagonal are
factor correlations, standardized independently in each age group.

of stability in the primary ability (test-specific) domain. For ex-
ample, although only about 14% of the young group’s variance
of Space at Time 1 is determined by g, 72% of Space’s Time 1
variance is determined by the Space test-specific factor in the
young group. This indicates substantial stability in both the g
and test-specific domains. Proportions of stable test-specific
variance to total g-adjusted variance are given in the right-hand
column of Table 9. Considering that these proportions are con-
taminated by measurement error, the proportion of stable vari-
ance in the primary ability measures independent of g is indeed
impressive. Finally, the unique variances show some evidence of
change in the primary abilities, but in many cases the proportions
of unique variance are close to what would be expected to be
the magnitude of error variance, given the reliabilities of the
measures reported by Thurstone and Thurstone (1949).

Table 8
Correlations and Regression Coefficients Indicating Stability
of Individual Differences in g

Group r r? 1-r? b° bax®
Young

2, 8 .887 787 213 0.791 -0.209

£, 8 933 .870 130 0.894 —0.106
Middle aged

81, & .927 .859 .141 0.965 —0.035

£2, 83 .959 920 .080 1.000 0.000
Old

2,8 944 .891 .109 0.952 —0.048

82,83 .959 920 .080 1.069 0.069

Note. Stabilities are shown for 7-year intervals between adjacent longi-
tudinal occasions.

* Simple correlation of scores for adjacent occasions.

b Simple regression of later occasion on earlier occasion (unstandardized).
¢ Regression of change score on earlier occasion (unstandardized).
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Table 9
Estimated Variance Components From Final
Multiple Groups Model

Variable Fa g*  Test-specific® Unique®  Stable (test)®
Young
\'A 76.286 .543 333 124 729
S 98.688 .137 724 139 .839
R, 27.518 .547 .186 268 410
N, 114.107 .282 591 127 .823
W, 136.097 .199 332 470 414
V, 62.008 .531 .385 .084 .821
S, 103.512  .104 689 .208 768
R, 27.832 430 325 .246 .569
N, 115.828 .221 576 203 739
W, 148.667 .144 683 173 798
Vv, 63.587 475 354 171 674
S3 104.872 .094 634 274 .698
R; 24.025 457 318 225 .586
N3 96.291 244 652 104 862
W; 159.879 .123 620 257 713
Middle aged
v, 77.203 .599 273 128 .681
S, 97.719 .153 468 369 .559
R, 32471 517 299 .184 448
N, 120.387 .299 .589 d12 .840
\\A 154861 .195 502 .304 623
V, 81.848 .564 304 133 696
S, 82420 .183 680 137 .832
R, 29.076 .576 .266 157 629
N, 127.997 .280 599 121 .832
W, 125227 .240 564 .196 742
V, 81.260 .617 206 178 .536
S; 85.797 .191 .387 422 478
R; 30.568 .596 .256 148 634
N, 109.363 .356 528 116 .820
W, 119.517 273 .505 221 696
Old
Vv, 102.167 .634 .087 278 238
S, 83.784 253 .348 400 465
R, 34374 685 .105 210 333
N, 119.696 .421 441 138 762
WA 163.680 .258 516 226 695
Vv, 115.064 .573 .184 243 431
S, 77426 278 292 431 404
R, 36.005 .665 .201 134 .600
N, 129.347 .396 .466 .138 772
W, 152.787 .281 505 214 702
V; 126.724 .647 182 172 514
Ss 74.825 .356 385 258 .599
R, 38.027 .783 .104 113 479
N; 119.211  .534 313 153 672
W, 151.523 353 438 208 678

Note. & = estimated variance of observed variable. V = verbal meaning;
S = space; R = reasoning; N = number; W = word fluency. Subscripts
on variables indicate longitudinal occasion (1 = Time 1, 2 = Time 2,
3 = Time 3).

2 Proportion of variance due to g.

b Proportion of variance due to test-specific factor.

¢ Proportion of variance unique to the observed variable. The sum of the
three proportions (g-related, test-specific, unique) is 1.0.

4 Proportion of variance not determined by g that is determined by the
test-specific factor.

Discussion

The results of the present study present a relatively coherent
picture—one of measurement equivalence and stability in psy-
chometric intelligence, as measured by the Thurstones’s 1948
Primary Mental Abilities test, in adulthood. We found that it
was highly plausible to model the factor loadings of a general
intelligence factor as being invariant, both longitudinally and
across multiple age groups. We also found a high degree of sta-
bility of individual differences across the adult life span.

The finding of invariance in the g factor loadings is important
relative to the suggestion in the literature that the fundamental
measurement properties of the psychometric tests change over
the life span (e.g., Baltes & Nesselroade, 1970; Demming & Pres-
sey, 1957; Schaie, 1977). As shown by Meredith (1964), under
selection of subpopulations from a population for which an iso-
morphic common factor model holds, the multiple subpopula-
tions will have an invariant unstandardized factor pattern matrix.
Meredith’s work implies that one must reject the hypothesis of
metric invariance before one is justified in concluding that the
groups have qualitatively different factor structures. One cannot
argue for qualitative group differences in measurement properties
if the hypothesis of metric invariance cannot be rejected. In con-
trast, we found the hypothesis of metric invariance to be strongly
supported by our data. Our results therefore suggest that, what-
ever the faults inherent in the constructs of psychometric intel-
ligence, measures of psychometric intelligence seem to be mea-
suring basically isomorphic constructs with similar measurement
properties at different age levels.

One could still, of course, argue that the constructs measured
by psychometric intelligence are of limited utility in predicting
intelligent behaviors in adults (e.g., Sternberg, 1985). Neverthe-
less, our findings do not support the notion that psychometric
testing of abilities in older populations is invalid because one is
measuring qualitatively different constructs with unstable mea-
sures. Our conclusion must be qualified by the fact that our
assessment of factorial invariance is specific to the second-order
g factor. We cannot assess the invariance of the primary ability
factor loadings from our data. We therefore cannot rule out the
possibility of nonequivalent measurement properties at the pri-
mary ability level, although, given the stability indicated by the
test-specific factors, the likelihood of measurement equivalence
in the primary ability factors seems quite high. Data we recently
collected on an expanded ability battery as part of the 1984 SLS
assessment should help us address the measurement equivalence
issue at the primary ability factor level.

The finding of factorial invariance is relevant to the factor
analytic literature suggesting de-differentiation of ability factors
in old age (Reinert, 1970). The de-differentiation argument states
that ability factors coalesce, or collapse, toward a general intel-
ligence factor in older groups. The early literature on this phe-
nomenon was plagued by methodological inadequacies (Cun-
ningham, 1978; Reinert, 1970; Schaie & Hertzog, 1985). Recent
comparative factor analysis work by Cunningham (1980, 1981),
using confirmatory factor analysis methods, suggests that there
is little evidence for gross collapse of the factor space—the same
number of factors are needed to model ability variables in old
groups, and the loading patterns are highly similar. Our results
are consistent with Cunningham’s findings in suggesting invari-
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ance in the raw-score regressions of variables on ability factors,
both across age groups and longitudinally within age groups (see
also Cunningham & Birren, 1980).

Cunningham (1980, 1981) reported evidence for a mild form
of de-differentiation—that is, increased factor correlations in the
older groups. Our finding of increased communalities for g in
the old group is also consistent with this mild form of de-differ-
entiation. To clarify the relation, we report in Table 10 corre-
lations among the primary abilities obtained by a confirmatory
factor analysis specifying test-specific factors. As can be seen in
Table 10, there is a pronounced tendency for factor correlations
to be higher in the old group. Crude indexes of this tendency
are the average correlations of .36 for the young group, .39 for
the middle-aged group, and .54 for the old group. Nevertheless,
it must be emphasized that the primary thrust of the de-differ-
entiation argument—qualitative change in the nature of ability
factors—is neither supported by Cunningham’s findings nor by
our own.

The age-related measurement equivalence in the PMA allows
us to make unambiguous interpretation of the stability of indi-
vidual differences in g over time. Clearly, individual differences
in general intelligence are highly stable across 14-year longitudinal
epochs for three age groups (spanning most of the adult age
range). The stability coefficients indicated that approximately
90% of the g variance in the middle-aged and old groups was
consistent between adjacent 7-year testing intervals. There is,
then, little indication in these data of any substantial degree of
variability in developmental trajectories in g. Moreover, the sta-
bility of individual differences in the PMA ability-specific com-
ponents in our longitudinal model suggest a high degree of sta-
bility in individual differences on the primary abilities as well.

Although these results clearly limit the degree to which one
could argue for a substantial degree of interindividual differences
in intraindividual change in psychometric intelligence in adult-
hood, it would be overstating the case to argue that these data
demonstrate a lack of variability in change functions across the
adult life span. For one thing, it is well-known that the longitu-
dinal samples of the SLS are influenced by a substantial degree
of experimental mortality (Schaie, Labouvie, & Barrett, 1973),
causing the participants in the 14-year studies to be relatively
select with respect to ability levels. It is highly likely, given the
relatively long 7-year retest interval and the nature of the sampling
procedures, that individuals in terminal decline or suffering dif-
ferential loss of abilities due to severe illness will have dropped
out of the longitudinal sample (Hertzog, Schaie, & Gribbin,
1978). The high degree of stability we observed in this study
may be specific to more select, healthy subpopulations of adults
and may not generalize to the population at large. Moreover, our
sample size was sufficiently small that we were forced to pool
over relatively large age ranges to form our age groups. Such a
procedure maximizes individual differences at the initial mea-
surement occasion and may have obscured some degree of het-
erogeneity in developmental trends. We note, however, that the
estimates of stability did not differ greatly between the Sample
1 analysis and the age-partitioned multiple group analysis that
reduced individual differences produced by wide age spans.

Of course, as McCall (1981) pointed out, even stabilities of .9
allow for a greater degree of crossover of individual curves than
might be expected by social scientists. At the individual level, it

Table 10
Primary Ability Factor Correlations for the Three Age Groups
Verbal Word
Variable Meaning Space Reasoning Number Fluency
Young (M age = 37)

Verbal Meaning 1

Space 115 1

Reasoning .559 455 1

Number .390 239 489 1

Word Fluency 531 034 425 334 1

Middle aged (M age = 49)

Verbal Meaning 1

Space 296 1

Reasoning 711 479 1

Number 419 .248 441 1

Word Fluency .508 .039 439 .308 1

Old (M age = 65)
Verbal Meaning 1

Space .593 1

Reasoning .838 .650 1

Number 666 .528 627 1

Word Fluency 557 290 202 450 1

is still possible that a given individual will buck the tide, and
exhibit less change in g than his or her same-age peers. There
may also be more variability in the primary abilities than in the
higher order intelligence factor. One can see in Table 7 that the
test-specific stabilities were in some cases smaller than the sta-
bilities for g in the same age interval. In the old group, for ex-
ample, the stability of the Space test-specific factor seems to be
smaller than the stability observed for Space in the young and
middle aged, even though the stability of individual differences
in g is, if anything, greater in the old group. This result may
indicate slightly more variability in the patterns for the Spatial
Orientation ability tapped by the Space test (see McGee, 1979).
These data are not optimally suited for assessing primary ability-
specific change, however, because unreliability due to measure-
ment error cannot be separated from instability in the ability in
the analysis we have reported. In any case, we must be careful
to emphasize that there is considerably more consistency than
inconsistency in age changes in all age groups, and for all PMA
subtests. Finally, we cannot rule out the possibility that individual
differences in change (or for that matter, changes in factor load-
ings), occur in older ages (beyond 80) not represented in this
study.

The invariance in the PMA g factor loadings and the stability
of individual differences in intelligence contrasts sharply with
patterns of mean age changes found in the SLS (e.g., Schaie,
1983; Schaie & Hertzog, 1983). Schaie has consistently found
variation in mean patterns according to age, cohort, and time
of measurement. Moreover, these mean changes have been found
to vary in magnitude for different abilities. The difference in
findings underscores the critical distinction between stability in
means (i.e., on average, no age changes) and stability of individual
differences. In normally distributed variables, stability of the
means and stability of individual differences (as measured by


Hiroko


170 CHRISTOPHER HERTZOG AND K. WARNER SCHAIE

covariances) are statistically (and conceptually) independent. As
one can see in the next article in this series (Hertzog & Schaie,
1986), we can observe stability of individual differences either
when there are no mean age changes or when there are substantial
mean changes over a given portion of the life span.
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