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Longitudinal Methods
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CHRISTOPHER HERTZOG

INTRODUCTION

Investigators studying problems in the developmental
sciences, particularly developmental psychologists, have
long felt that the explication of lawful relations in devel-
opmental processes of necessity requires observing the
same organisms over that period of time during which
developmental phenomena of interest are likely to occur.
However because most developmental phenomena of in-
terest in humans occur relatively slowly (with the excep-
tion of early infancy and the period prior to death in old
age), it is not generally practical for developmental re-
search designs to follow subjects over the entire develop-
mental period. Thus a variety of developmental research
designs have been devised to finesse the problem by as-
suming that some estimate of developmental change
from an experimental or quasi-experimental design may
be substituted for the long-term observation. Many in-
vestigators have tried to model developmental phenom-
ena with more economical designs, whether by ‘experi-
mental induction of change, by retrospective analysis, or
by comparisons of individuals of differing developmental
levels at one point in time. These more economical devel-
opmental designs all have merit depending upon
whether the assumptions necessary to apply the design’
are accurate and whether the design is best suited for the
specific questions to be asked. It is often the case that the
status of these designs as quasi-experiments is ill defined
and that the enabling assumptions have not been expli-
citly formulated. *

It is the purpose of this chapter to discuss three topics
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involved in the correct understanding and application of
research design method to the study of developmental
processes. The first topic places the various develop-
mental methods within the context of the broad group of
quasi-experimental designs (Campbell & Stanley, 1967)
useful in developmental research. The second topic con-
cerns explication of the interdependence of develop-
mental theory and selection of the best suited research
designs, such that data collection and analysis are prop-
erly derived from theory and thus capabile of testing the-
ory-derived hypotheses. The third topic involves the de-
scription of statistical models and estimating techniques
currently available for the modeling of developmental
processes. Here special emphasis will be given to the re-
cently developed methods permitting the application of
factor analysis and linear structural equation systems to
developmental data.

As will become clear upon reading this chapter, these
three topics are interrelated in many ways and a number
of different approaches could be chosen for their presen-
tation. We begin with a discussion of the relation be-
tween developmental theory and longitudinal methods,
including a set of definitions and principles, a discussion
of the advantages and disadvantages of the longitudinal
methods, and some guidelines for the suitability of alter-
nate theoretical models in attaining parsimonious design
choices. We next explicate the types of quasi-experimen-
tal designs common in developmental psychology. In this
context we consider the methodological problems intrin-
sic to the common developmental desi'gn.s, present ex-
panded sequential strategies to reduce limitations of the
more traditional developmental designs, consider the re-
maining confounds and their impact, and assess the ap-
plicability of proposals for the simultaneous estimation
of confounded parameters coming from sociological re-
search. The final section on statistical techniques for lon-
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gitudinal analysis briefly highlights methods for the test
of hypotheses concerning means and covariance struc-
tures. Space limitations prevent us from elaborating on
these methods in any detail, but the interested reader is
directed to the relevant reference materials.

DEVELOPMENTAL THEORY
AND LONGITUDINAL METHODS

Definition and Principles

In general, the goal of longitudinal methods in devel-
opmental psychology is to obtain valid measures of de-
velopmental change for descriptive and explanatory
purposes. This section will attempt to link the applica-
tion of longitudinal methods with underlying develop-
mental theory by highlighting current views of develop-
ment as a time-dependent process, indicating alternate
models of development, and offering some definitions of
what is or is not included in the term “longitudinal
methods.”

Development as a Time Dependent Process. Although
development consists of intraindividual change over
time, not all such change should, in principle, be devel-
opmental; indeed, there has been some controversy as to
the attributes which would enable one to posit behav-
ioral change as truly developmental (cf. Baer, 1970; Baltes
& Nesselroade, 1979; Baltes & Willis, 1977; Reese &
Overton, 1970). Organismic conceptions of development
demand that developmental change have the attributes
of universality, fixed sequentiality, structural and quali-
tative transformations and orientation toward an end
state (see McCall, 1977, or Wohlwill, 1973 as representa-
tives of this position). Such strong conception of develop-
ment is contrasted by the operant position which might
be characterized as a weak model. Here in its extreme
form any reliably observed form of behavior change
might be viewed as development (cf. Baer, 1970; Ban-
dura, 1971). Generally, however, most developmental re-
searchers would agree with Baltes and Nesselroade
(1979) that there are some minimal criteria needed
to label change as being developmental. They suggest
“one needs a theory-based or empirically derived be-
havior change process on the descriptive level . .. [and]
... the use of historical time-ordered paradigms of in-
fluences for the explanation of developmental change”

. 15).

@ We may start then with Kessen’s (1960) formulation
that “a characteristic is said to be developmental if it can
be related to age in an orderly way” (p. 36), or B = f(4).
Kessen also specified that a response in a developmental
model should be seen generally as a function of age as
well as a special population and an environment. In ear-
lier work (Schaie, 1965, 1973) we have explicated this
expanded notion by a model where B = f [4,C,T]. It
should be noticed that the three items involved are
strictly descriptive parameters. Their definition implies
that age [A] will refer to the number of time units elapsed
between the birth (entrance into the environment) of the
organism and the point in time at which the dependent
variable is measured. The special population in this ex-
panded model is generally defined as cohort [C], which
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implies the total population of individuals entering the
specified environment at the same point or interval in
time.! Environment is for descriptive purposes more pre-
cisely defined by the term time of measurement [T’} (equiva-
lent to the term period in the sociological literature)—that
is, the point in time at which the response of interest is
actually recorded.

The critical problem in working with the model B =
fIA,C,T] is that although the three effects are conceptu-
ally independent, the three variables are in fact linearly
dependent. If we define C by birth year, then 7= C + 4;
if year of birth and age are known, then the current year
may be specified with complete certainty. As we shall see,
the research designs to be discussed in this chapter aid in
the estimation of these three effects, but they do not elim-
inate the indeterminacy due to the linear dependence
except by making assumptions about the presence or ab-
sence of some of the effects in question. Thus application
of the methods described here may, in principle, disen-
tangle the effects of 4, C, and T (although the validity of
the approach depends directly on the veracity of the as-
sumptions which must be made to enable estimation of
the various effects).

It cannot be emphasized enough that a descriptive
model based on these methods can do nothing more than
identify those effects which are correlated with A, C, or T,
independent of other parameters. Given an organismic
conception of development, we cannot conclude that ef-
fects associated with 4, and not C or 7T, represent devel-
opmental change in the strong sense referred to above
unless there are theoretically sound justifications and ad-
ditional evidence for concluding that the age-correlated
change is truly representing ontogenetic development.
From a life-span perspective the justification for inferring
ontogenetic change from significant 4 effects might be
generally stronger in child development than in adult de-
velopment, although this position would be vigorously
debated by child psychologists and gerontologists alike.
In any case one cannot conclude that 4 effects imply in-
evitably the existence of ontogenetic change. For exam-
ple a study of attitudes and life-satisfaction after age 65
would probably be able to isolate age-correlated change,
common to a range of cohorts and times of measurement.
Yet such change might not necessarily be a function of
ontogenetic development since it could also be specific to
retirement and related to 4 only by virtue of the fixed
retirement age prevalent in the society over the period of
measurement. As such the changes might well be due to
an age-correlated but event- or sequence-relevant phe-
nomenon (Baltes & Willis, 1977).

It follows then that developmental analysis only
begins with the parametric description of age-correlated
change, and understanding of development also requires
an attempt to provide explanations of behavioral devel-
opment from a process-oriented perspective. A process-
oriented explanation of development requires specifica-
tion of antecedent-consequent relationships at a causal

' It should be noted that cohort can also be defined by entry
into a common environment by individuals of different ages, e.g., a
college class or the initial work force of a new factory. Restrictions
regarding the nature of the population and latitude in defining the
boundaries of a given cohort will depend upon the special as-
sumptions appropriate to the problem being investigated (see also
Rosow, 1978).



level. The specification and testing of alternative pro-
cess-oriented models of behavioral development is ob-
viously a principal goal of developmental psychology
and yet is its most difficult task, since developmental
phenomena are generally produced by complex interac-
tions among a set of underlying processes which may
produce a range of developmental phenotypes depend-
ing upon the environmental milieu in which their geno-
types operate. Thus validation of process-oriented
models of development must inevitably require the anal-
ysis of a multivariate system of variables measuring the
behavioral domain of interest and the putative processes
determining developmental change in this domain
(Baltes & Nesselroade, 1973; Nesselroade, 1977).

It is rather implausible to assume that behavioral de-
velopment could be encapsulated in any univariate cau-
sal model. Much of our discussion of longitudinal
methods must then focus on the design and analysis of
behavioral investigations from a multivariate perspective
as it affects measurement of relevant constructs and spec-
ification of causal relations among these constructs.

In order to begin to provide an accurate descriptive
and explanatory account of developmental phenomena,
we must begin by specifying a set of competing models
which account for these phenomena. These models must
obviously be directed toward an explanation of change
within individuals (intraindividual change), as empha-
sized by most developmental theorists (e.g., Baltes &
Nesselroade, 1979; Wohlwill, 1973). The models must
also allow for differences among individuals at any given
point in time (interindividual differences) and inter-
individual differences in the course of intraindividual
change (see Baltes & Nesselroade, 1979; Baltes & Willis,
1977). The power of such models will be directly related
to their ability to account for systematic age-related intra-
individual change and interindividual differences in
intraindividual change on the basis of a set of causal
processes varying between individuals. When all is said
and done, we are concerned with deriving estimates for
populations and their subtypes, as well as definitions
of the range within which intraindividual variability
about such parameters may be found (for further dis-
cussion of these issues see Baltes & Nesselroade, 1979;
Buss, 1974).

Models of Development. The selection of a longitudi-
nal design for a developmental study depends critically
upon the developmental model believed applicable to
the phenomenon (Schaie, 1973). Thus it is important to
consider the (often implicit) developmental models used
by behavioral scientists and their salient characteristics
vis-3-vis design selection.

A distinction must first be drawn between develop-
mental models implying either quantitative or qualita-
tive change. Quantitative change implies continuous in-
cremental or decremental change in some measures of
behavior, given the assumption that the underlying pro-
cesses determining the behavior remain fixed or static.
Quantitative models of development need not be linear
(and might even be recursive); the assumption of lin-
earity and unidirectionality is usually made only as a
simplifying convenience for data analysis. The critical
factor in a quantitative model is that development is rep-
resented only in changes in the performance level on
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some behavioral scale. By contrast qualitative change is
often considered to require discrete shifts from one stage
to another (e.g., the Piagetian cognitive stages); qualita-
tive developmental change implies that behavior at a
later stage of development cannot be accounted for asa
simple function of behavior at an earlier state of develop-
ment-—rather some structural metamorphosis among de-
termining processes is hypothesized to have produced a
new function relating process to behavior (see Wohlwill,
1973, for a useful account of these concepts and of cri-
teria for inferring qualitative change).

Developmental models are not necessarily exclusively
quantitative or qualitative in nature since in qualitative
models. continuous changes are said to occur within a
given stage until a threshold level is reached, at which
point the transformation to the next stage occurs. As
pointed out by Baltes and Nesselroade (1970, 1973), the
distinction between qualitative and quantitative devel-
opmental change is critical in determining the adequacy
of longitudinal methods in a given application. It makes
little sense to make purely quantitative comparisons of
behavior on a given performance measure at two differ-
ent levels of development if qualitative change has oc-
curred because the likelihood is high that qualitative
change will impose a qualitative difference in the rela-
tionship of the behavioral scale to the underlying con-
structs the scale supposedly measures.

If we expect qualitative differences in antecedent-con-
sequent relationships due to development, our analysis
must be designed concomitantly to characterize the na-
ture of the qualitative change and to estimate the extent
of quantitative change over the age range where the pro-
cess-behavior relationships may be assumed static and
thus characterized as a continuous quantitative function.
Whether our model is quantitative or qualitative, it is
obvious that the ages of development studied in our
model will have implications as to the kind of data
needed for full description of the developmental process.
With respect to development during childhood, it is
usually true that, where quantitative models are suffi-
cient to account for a developmental phenomenon, an
incremental model will fit most variables. The incremental
model implies monotonic increases in performance level
on a behavioral scale, although the function describing
the behavioral increment may not be linear but rather a
slowly decelerating growth rate and young adult asymp-
tote as specified by a Gompertzian growth curve.
Whether a continuous or stage model is assumed to
apply to childhood development, interindividual differ-
ences about the normative developmental rates and the
temporal latitude of stages are generally assumed to be
narrow.

Studies of adult development have, for the most part,
implicitly assumed an srreversible decrement model. This
model, common to analyses in areas such as intelligence,
creativity, and achievement, assumes that maximal level
of function is reached in young adulthood followed by a
linearly accelerating and irreversible decline. The irre-
versible decrement model implicitly assumes that adult
development may be characterized by a purely quanti-
tative model of decline secondary to the aging process; it
generally emphasizes the process of biological decrement
with aging (Baltes & Willis, 1977; Schaie, 1973). Another
implicit specification of the irreversible decrement model
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is that age changes occur as a function of maturational
(ontogenetic) events which are affected but slightly by
environmental variation.

Research in adult psychological development has
been dominated by the irreversible decrement model, to
the exclusion of other models of potential explanatory
power (Baltes & Willis, 1977; Barton, Plemons, Willis, &
Baltes, 1975; Labouvie-Vief, 1977; Labouvie-Vief &
Chandler, 1978). It has generally been the case that age-
correlated effects are assumed to be evidence of irrevers-
ible decrement, even in the absence of corroborative evi-
dence that processes other than biological decrement due
to aging cannot account for the age-correlated effects.
The irreversible decrement model is a valid model for
some psychological processes, most notably those func-
tions which are directly related to the biological integrity
of the central nervous system; however, we must echo the
concerns of Baltes and Willis (1977) and others that re-
search in adult psychological development should not
axiomatically postulate the irreversible decrement model
as a theoretical basis for all research questions of interest.

Given the position that alternative models for adult
psychological development other than the irreversible
decrement model should be developed and tested, what
alternative models might be specified? Two simple alter-
natives (Schaie, 1973) are the aduit stability and the decre-
ment with compensation models. The adult stability model
postulates that once an adult asymptote is reached, be-
havior remains stable throughout the remaining life
span. However cyclical changes might still occur about
an optimal level as the result of both external and inter-
nal events (cf. Goulet, Hay, & Barclay, 1974; Schaie,
1973). The stability model has been assumed to hold in
the study of personality traits, and it may also fit compo-
nents of cognitive development such as crystallized intel-
ligence. ‘

The decrement with compensation model, increas-
ingly popular as a result of gerontological intervention
studies, expects decline past maturity but argues that en-
vironmental intervention may compensate for matura-
tionally programmed deficits. This model might fit
concepts such as fluid intelligence or measures of per-
formance where decline is to be expected due to corre-
lated decremental biological events but where environ-
mental input might have significant moderating effects.
An excellent example in the area of physiology is the
rescarch by DeVries (1974) which suggests that
programmed exercise for the elderly may ameliorate
muscular arid cardiovascular decline previously assumed
to be irreversible.

Another important model for adult development is
the sequence-relevant model (Baltes & Willis, 1977), which
" posits that age-correlated change is specific to a pro-
grammed sequence of processes which are correlated
with age but not isomorphic with ontogenetic change—
that is, a sequence of processes which are not inevitably
associated with the aging process. One of the implica-
tions of the sequence-relevant model is that develop-
mental psychologists must differentiate normative from
nonhormative age change (cf. Baltes & Nesselroade,
1979), which can be an extremely difficult theoretical
problem. Nevertheless the distinction of sequence-rele-
vant change from age-relevant change is an important
one for it is quite possible that effects which have been
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assumed to be a function of ontogenetic decline might be
better described by an adult stability model coupled
with a probabilistic occurrence of sequence-relevant
change. An example would be the terminal decline or
terminal drop hypothesis of Riegel and others (e.g., Rie-
gel & Riegel, 1972; Siegler, 1975) which posits stability of
adult intelligence until impending death when physio-
logical pathology compromises the functional efficiency
of the nervous system.

Finally we must recognize that no one developmental
model need be valid for all individuals. One of the char-
acteristics of human development is the ever-increasing
range of individual differences; thus developmental psy-
chologists need to specify models which take into account
the wide variety of multidimensional and multidirec-
tional possibilities for patterns of developmental change.
It is unlikely that a life-span-oriented approach can, for
any variable system, sufficiently account for develop-
ment with a single developmental model. Alternate pat-
terns of change are highly likely for the stages of late
maturation, adulthood, and senescence.

Longitudinal Methods. The term longitudinal methods
has been used in a variety of ways. Hindley (1972), for
example, claims that “there is no hard and fast definition
of what constitutes a longitudinal study” (p. 23), al-
though Baltes and Nesselroade (1979) contend that one
requirement of a longitudinal inquiry must be that “the
entity under investigation is observed repeatedly and
evolves over time” (p. 4). For our purposes, however, we
would like to include within the general category of lon-
gitudinal methods at least that variant of a longitudinal
study which does not involve repeated measurement of
the same individual—namely, sampling procedures in
which a cohort is observed repeatedly by means of suc-
cessive random samples from the parent population.

Longitudinal methods traditionally involve age-based
parametric models in which chronological age is the pre-
dictor variable of central importance. However it would
be quite feasible to include designs which might address
hypotheses where there is a directional time sequence,
even one which is uncorrelated with chronological age.
Indeed such designs might well be required in order to
address questions as to the cross-cultural congruence of
universal developmental stages. Thus our discussion of
longitudinal methods will include designs which are not
technically “longitudinal” by the stricter criteria of
others; we consider designs which are longitudinal only
in the sense that they model age-correlated effects by
sampling across a sequence of points.

In the past, longitudinal methods have been utilized -

primarily for the purpose of describing developmental
phenomena, and much of our discussion of longitudinal
method focuses on descriptive applications. However
these methods can be readily applied to explanation and
intervention by specifying prediction systems of process
variables or introducing design extensions which can
handle treatment effects (e.g., Labouvie, 1974, 1978).

Advantages of Longitudinal Methods

The primary advantage of the longitudinal methods,
of course, is the fact that they emphasize intraindividual
change (IAC) while cross-sectional approaches can make
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statements only about interindividual variability (IEV).
Even in the case where independent samples are studied
over time from a given cohort, the emphasis is then on
change within the populations examined rather than
upon differences between samples possibly coming from
noncomparable populations. Obviously most longitudi-
nal approaches permit analyses of IEV in addition to
IAC.

Following Baltes and Nesselroade (1979) we can iden-
tify five distinct rationales for longitudinal studies of be-
havioral development. Of these, three involve develop-
mental descriptions while the other two are explanatory
in nature. As indicated previously, the first rationale is
concerned with the direct identification of IAC. Such change
can be quantitative and continuous, or it can involve
transformation of one behavior to another or changes in
the patterns of observed variables as they measure theo-
retical constructs. Observations based on a single occa-
sion are simply not appropriate for this purpose. To be
explicit, if cross-sectional data are to be used to estimate
IAC, the assumptions to be met would include that (1)
subjects must be matched across age levels, (2) different-
aged subjects must come from the same parent popula-
tion at birth, and (3) different-aged subjects must have
experienced identical life histories. Such assumptions
cannot be met in human studies.

The second rationale concerns the direct identification of
IEV in IAC—that is, we are here interested in the degree
of variability displaced by different individuals in their
behavioral course over time. Examination of similarities
and differences in developmental patterns requires the
availability of measures of longitudinal change within in-
dividuals. Unless such data are available, it is not possi-
ble to answer the question of whether or not group pa-
rameters are characteristic of the development of any
individual. Of course the valuable hypothesis-generating
source of single-subject research depends upon longitudi-
nal analyses (cf. Shontz, 1976).

Third, longitudinal data permit the analysis of interrela-
tions among IAC within a multivariate behavioral domain
of variables. Only when several individual behaviors
have been followed over time is it then possible to dis-
cover constancy and change of the entire organism, par-
ticularly where a wholistic or structural approach is
taken to human development (e.g., Riegel & Rosenwald,
1975). Longitudinal studies alone, by means of multiple
observations over time, permit the discovery of structural
relations among changes-in behavior. Such approaches
are obviously essential for the meaningful identification
of systems and progressive differentiation processes as es-
sential concepts in the understanding of human growth
and development (cf. Lund, 1978; Urban, 1978).

The fourth rationale for longitudinal studies involves
the analysis of determinants of IAC. Here we are concerned
with the identification of time-ordered antecedents and
consequents as necessary, albeit not sufficient, conditions
for causal inference. Longitudinal data alone can pro-
vide the necessary data when tHe causal process involves
discontinuity (e.g., sleeper effects), is multidirectional, or
contains a multivariate pattern of influences (cf.Baltes,
Reese, & Nesselroade, 1977; Heise, 1975).

Fifth and finally, longitudinal studies permit the anal-
ysis of IEV in the determinants of IAC. What is at issue here is
the fact that many individuals can show similar patterns
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in intraindividual change which may be determined by
different change processes. This may be the case for per-
sons at different levels in the range of talent or other per-
sonality attributes. But interindividual differences in
patterns of change may also be due to the operation of
alternate combinations of causal sequences.

Importance of Strong
Developmental Theory

The inherent confounds implicit in the longitudinal
methods require strong, clearly specified developmental
theories in order to generate meaningful hypotheses and,
in fact, to permit design economies which make certain
longitudinal inquiries logistically feasible. Some of the
major objections of recent papers critical of Schaie’s se-
quential methods (Adam, 1978; Buss, 1979-1980) are re-
lated primarily to the conceptual difficulties an investi-
gator encounters when attempting to apply sequential
strategies using a totally atheoretical approach. While
we will consider these strategies and their limitations in
detail, it should be mentioned here that it is certainly un-
profitable for developmental psychologists (or any other
scientists) to pursue descriptive paradigms in a theoreti-
cal vacuum; such an approach is not merely weak science
but highly prone to the “discovery” and perpetuation of
misleading inferences.

The critical problem (one which, quite frankly, re-
mains to be satisfactorily solved) is how plausible rival
models of development may be tested when confounds
inherent in longitudinal methods appear to preclude de-
signs which make the alternative model’s assumptions
directly falsifiable. The following methods do not resolve
this problem; however, we would argue that they provide
a method of matching a developmental model to re-
search design in a way which produces valid estimates of
hypothesized effects, given that the model is valid and,
further, that their assumptions are less restrictive (and
more likely to hold true) than the assumptions enabling
the simpler, more traditional designs. The develop-
mental psychologist should be acutely sensitive to the
fact that the parameter estimates from a chosen design
are no more valid than the model assumptions which
permit their estimation. There is simply no substitute for
an explicitly defined developmental model; even a mis-
specified model, if explicitly formulated, at least provides
a basis for understanding the potential consequences of
the misspecified sources of effects.

LONGITUDINAL METHODS AS
QUASI-EXPERIMENTAL RESEARCH
DESIGN

Multiple Observations with or
without Experimental Treatments:
Methodological Problems

Internal and External Validity. Because age is a sub-
ject attribute which cannot be experimentally assigned
(at least not without a time machine), longitudinal stud-
ies cannot conform to the rules for true experiments and
hence are subject to all the problems inherent in what
Campbell and Stanley (1967) term quasi-expertments.



These problems may be categorized as either thieats to
the internal validity or the external validity of a given quasi-
experiment. Internal validity is upheld if the factors ana-
lyzed in a given design are truly measures of the hypoth-
esized construct and are not confounded by other factors
not explicitly included in the design. External validity
defines the limits of valid generalization from the find-
ings of a given study.

Campbell and Stanley (1967) enumerated eight dif-
ferent threats to the internal validity of a pretest-posttest
design: effects of history, maturation, testing, instrumen-
tation, statistical regression, mortality, selection, and the
selection-maturation interaction. For the developmental
psychologist, history and maturation have special mean-
ing above and beyond the internal validity threat posed
for a pretest-posttest design. Maturation is quite ob-
viously not a threat in developmental studies but rather
the specific variable of interest. The fact that maturation
is the primary effect of interest to developmental psy-
chologists does not imply that the measurement of ma-
turational effects is inevitably straightforward; given a
specific developmental model, it may be crucial to not
merely test the null hypothesis of no maturational effects
but rather some explicit alternative hypothesis specifying
the direction and magnitude of the expected matura-
tional effect.

Historical effects, on the other hand, are the primary
source of internal validity problems for the develop-
mental psychologist. History is directly tied to both co-
hort and time-of-measurement effects. A cohort, as we
have defined it, is a group of individuals born in the same
historical period who therefore share the same environ-
mental circumstances at the same point in'their matura-
tional sequence. Time-of-measurement effects represent
the events which affect all members of the population
living at a given period of history. In both cases historical
events may modify the range of person-environment in-
teractions and limit thé external validity of any inter-
nally valid estimate of maturational change. However, as
we shall see shortly, historical effects, operating as either
cohort or time-of-measurement effects, may threaten the
internal validity of designs attempting to measure matu-
ration per se.

Since the traditional longitudinal design is a special
case of the pretest-posttest design in that it repeatedly
measures the same individuals over time, the other six
internal validity threats listed by Campbell and Stanley
are important threats to the validity of longitudinal de-
signs as well. The validity threats are discussed in greater
detail later, but we now supply their definitions: Testing
refers to the effects of the measurement process itself,
which may be confused with maturational effects. There
are two major effects of testing per se—practice and reac-
tivity. The act of testing itself provides practice on the
test, which should in general lead to improvements in
performance with each new retest. Reactivity refers to the
possible effects of being tested on subsequent behavior
because the subjects react to being tested by behaving
differently than had they not been tested. Such effects
could also be confused with maturation. Instrumentation
refers to any differences in the measurement techniques
which covary with the measurement occasions. Statistical
regression refers to the tendency for variables containing
measurement error to regress toward their mean from

96 K. WARNER ScHAIE, CHRISTOPHER HERTZOG

one occasion to the next. Mortality refers to the attrition
of subjects from a sample between measurement occa-
sions; it is termed experimental mortality so as to include at-
trition due to biological mortality, morbidity, and other
psychological and sociocultural factors. Selection refers to
the process of obtaining a sample from the population,
and the selection-by-maturation interaction refers to the possi-
bility that variation in the method of sample selection
may produce variation in the maturational effects to be
estimated (see also Cook & Campbell, 1975).

In addition to the threats to the internal validity of
quast-experiments, Campbell and Stanley (1967) call at-
tention also to a number of limitations (threats to exter-
nal validity) with respect to how widely findings from
such studies can be generalized. These limitations are
concerned with questions regarding the experimental units,
the extent to which longitudinal data collected on one
sample can permit inference to other populations; exper:-
mental settings, the extent to which findings have cross-
situational validity (cf. Scheidt & Schaie, 1978); treat-
ment variables, limitations imposed by specific settings
of measurement-implicit reinforcement schedules (cf.
Birkhill & Schaie, 1975; Schaie & Goulet, 1977); and
measurement variables, the extent to which task characteris-
tics are appropriate at different developmental stages in
a longitudinal study (cf. Schaie, 1977-1978; Sinnott,
1975).

Longitudinal methods as defined in this paper are
generally designed to estimate the expanded function B
= flA,C,T] in an economical manner. As discussed pre-
viously by many (e.g., Kessen, 1960; Schaie, 1965), devel-
opmental psychologists cannot afford to wait a lifetime
to produce answers to the research questions that interest
them. The problem is particularly acute for life-span
studies of human development, where explication of 4,
C, and T parameters over a wide range of C and 7 values
would require the impossible: that the experimenter out-
live his or her subjects by at least one (or more) lifetimes!
Hence one needs designs which compromise the conflict-
ing goals of maximal external validity over possible vari-
ables in 4, C, and T and minimal investment of time in
data collection.

The most economical design in terms of time invest-
ment is the simple cross-sectional design, which samples a
range of individuals of varying chronological ages at a
single point in time. In the simple cross-sectional design,
too much may have been given up in the name of econ-
omy since the effect of 4 is completely confounded with
C (cf. Schaie, 1965). Thus the estimates of C obtained

from the cross-sectional design are internally invalid un-

less the strong assumption of no effects for 4 may be
made (Baltes, 1968; Kuhlen, 1963; Schaie, 1965, 1973,
1977).

The cross-sectional design, when applied to the study
of development, represents an attempt to estimate IAC
functions from IEV data which, taken in isolation, may
result in incorrect inferences about developmental func-
tions. Thus the simple cross-sectional design is not the
design of choice for developmental research. Given that
the focus of this chapter is upon longitudinal methods,
we shall have little else to say about the simple cross-sec-
tional design. Our attention now turns to the discussion
of the economy and validity problems of other develop-
mental designs.



Traditional, Single-Cohort Longitudinal Designs. The
classic longitudinal design was developed for the purpose
of explicitly estimating development as IAC—emphasiz-
ing that the most valid estimates of development mea-
sure change over time in the same individuals. Explicitly
this design represents a time series with an initial pretest,
a subsequent interventior: (traditionally the matura-
tional events occurring over time), and a posttest, all on
the same individual organisms. If the longitudinal study
is continued over more than a single time interval, there
is simply a further succession of alternating treatments
(read maturational events) and further posttests. Tradi-
tionally the longitudinal design was only applied to one
group of individuals of relatively homogenous chrono-
logical age at first testing and, therefore, to a single birth
cohort.

As pointed out repeatedly (Schaie, 1965, 1972a, 1973,
1977) the single-cohort longitudinal design is highly sus-
ceptible to validity threats and should be avoided unless
(1) experimental isolation can be achieved or (2) it can
be shown that the dependent variable is not influenced
by external environmental events. Barring such strong
assumptions (which will rarely hold for studies of human
development), several of the threats to internal validity
enumerated above are likely to provide alternative ex-
planations for the observed behavioral change (or lack
thereof) which are as plausible as sources of the effect as
is maturation itself. First, 7" and 4 are completely con-
founded, and thus any period effects related to the de-
pendent variable will render estimates of 4 internally in-
valid. These period effects may either mimic or suppress
maturational changes occurring over the particular age
span measured depending upon whether 4 and T co-
vary positively or negatively. Second, the single-cohort
longitudinal design does not directly control for other
internal validity threats which plague test-retest de-
signs—namely, testing, instrumentation, experimental
mortality, and statisiical regression. The careful re-
searcher can eliminate the confound of instrumentation
by taking steps to assure that the measurement proce-
dures are as consistent as possible, and statistical-re-
gression effects can be minimized by including at least
two retest occasions (Baltes & Nesselroade, 1979); how-
ever, there is simply no way for the single-cohort longitu-
dinal design to circumvent the confounds of testing and
experimental mortality effectively. Repeated testing
must inevitably introduce the possibility of practice ef-
fects or reactivity to the testing situation, and the re-
quirement of multiple test occasions virtually insures an
attrition of some subjects who participated at the initial
testing but who are unavailable, for whatever reason, for
subsequent retesting. To the extent that experimental
mortality simply produces a positively biased sample,
then the problem is one of external validity—i.e., the
overall level of performance of the attrited sample is
higher than that of the population. However if the attri-
tion effect interacts with maturation such that returning
subjects have different develGpmental functions than at-
trited subjects, then the developmental function esti-
mated by the single-cohort longitudinal design is inter-
nally invalid.

The single-cohort sampling of the traditional longitu-
dinal design also limits the external validity of the de-
sign. Given that cohorts may differ in person-environ-
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ment interactions due to historical effects (e.g., the
children of the great depression; cf. Elder, 1974), descrip-
tions of maturational change derived from a single co-
hort may well be unreplicable (i.e., externally invalid)
for other cohorts.

Considering the problems inherent in the single co-
hort longitudinal design, one of us has explicitly won-
dered whether this design is ever a completely valid de-
sign for developmental research (Schaie, 1972a), a
position which has evoked a spirited defense of tradi-
tional longitudinal methods (McCall, 1977). In fairness
we should emphasize that the single-cohort longitudinal
design, while deficient as a general method for studying
developmental phenomena, may prove useful in particu-
lar applications, such as defining typologies of develop-
mental patterns for a specifically targeted, single cohort
population. Moreover the single cohort design may pro-
vide preliminary evidence regarding developmental
functions which will later be replicated for additional
cohorts and measurement occasions. Exclusive use of the
single cohort longitudinal design for discovering norma-
tive laws of development is ill-advised unless the (proba-
bly unrealistic) assumptions of no period effects and no
cohort-by-maturation interactions can be theoretically
justified, a priori, for a specific population and behavior.

Sequential Strategies

Definitions. In order to reduce the limitations inherent
in the single-cohort longitudinal design, several alterna-
tive sequential strategies have been suggested (Baltes,
1968; Schaie, 1965, 1970, 1977). The term sequential de-
rives from the fact that the sampling frame for these de-
signs requires a sequence of samples taken across multi-
ple measurement occasions. In order to explicate the
various possible sequential designs, we must first differ-
entiate the sampling design from the analysis design. The
two concepts are heavily interrelated; sampling design
refers to the particular cells of a cohort-by-age (time)
matrix to be sampled in a developmental study, while
analysis design refers to the ways in which the cells which
have been sampled may be organized to analyze for the
effects of 4, C, and T. Figure 7-1 provides a prototypical
cohort-by-age matrix, which may be used to illustrate
the various sequential designs. Note that, given the in-
herent confounding of 4, C, and T discussed earlier, the
cohort-by-age matrix in Figure 7-1 represents all three
parameters: 4 and C as rows and columns of the matrix,
and T as a parameter contained within the cells of the
matrix.

We may distinguish two types of sampling designs:
those which use repeated measurements on the same in-
dividuals to fill the cells of the matrix and those which
use independent samples of individuals to fill the cells of
the matrix; either sampling method could be used to
provide the matrix given in Figure 7-1. Restricting our
discussion (for the present) to the sampling design, we
may use Baltes’s (1968; Baltes, Reese, & Nesselroade,
1977) terminology to define these two designs as longitudi-
nal and cross-sectional sequences. As shown in the diagonals
in Figure 7-1, a cross-sectional sequence involves the rep-
lication of a cross-sectional study in that the same age
range of interest is assessed for at least two different time
periods. As a consequence the estimate for each age level
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Figure 7-1 Schematic showing cross-sectional and longitudinal sequences and the modes of analysis deduced from the general develop-
mental model. (Note: Entries represent times of measurement [period].)

is obtained for multiple cohorts. Each estimate, however,
is obtained from an ideally random sample of its age-
cohort and measured only once. By contrast the longitu-
dinal sequence (bottom rows in Figure 7-1) represents
the repeated measurement of at least two cohorts over
the age range of interest. Here again estimates from each
cohort are obtained at two different points in time. A
critical distinction is the fact that only the longitudinal
sequence provides data which permit evaluation of 1IAC
and IEV in IAC

Schaie’s General Developmental Model. 1t was pointed
out earlier (Schaie, 1965) that data matrices like Figure
7-1 contained information permitting a variety of alter-
nate strategies of analyses.” To be specific, each row can
be treated as a longitudinal study, each diagonal as a
cross-sectional study, and each column would represent a
time-lag study (i.e., comparison of behavior at a specific
age for successive cohorts). The sequential sampling
designs cannot disentangle all components of the B =f
[4,C,T) function, given the linear dependence among
the three factors. However, Schaie (1965) suggested that,
given the B =f[4,C,T] model, three distinct analysis de-
signs exist which are created by considering the separate
effects of two of the three components while assuming
the constancy or irrelevance of the third. Consequently
we suggested (as exemplified in Figure 7-1) that the co-
hort-sequential strategy would permit separation of age

2 1t would, of course, be possible to construct row entries in Fig-
ure 7-1 by means of successive independent samples from the co-
horts under observation. Such data would use age correlated IEV
to provide estimates on averaged IAC but would no longer be
“truly” longitudinal—i.e., repeated observations on the same orga-
nisms. Such data (frequently used in survey research) are impor-
tant in controlling for various threats to the validity of repeated
measurement designs (see following for details).

3 Baltes (1968) conceptualized cross-sectional and<longitudinal
sequences as both sampling and analysis designs and disputed the
validity of the analysis designs suggested in Schaie’s general devel-
opmental model. This apparent disagreement was reconciled by
Schaie and Baltes (1975).
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change from cohort differences, under the assumption of
no time effects; the time-sequential strategy permits the
separation of age differences from period differences, as-
suming no cohort effects; and the cross-sequential strategy
permits the separation of age-cohort differences from pe-
riod differences, assuming no age effects. The time-se-
quential strategy is not a truly longitudinal approach
(i.e., one cannot do a time-sequential analysis on re-
peated measures data, since a given individual cannot be
the same age at two different points in time—see Figure
7-1) and will not therefore be considered further except
to note that it has merit for the estimation of reliable
age differences, for social policy purposes, and for depen-
dent variables where cohort effects are likely to be mini-
mal.

Longitudinal Sequences. When data are collected in
the form of longitudinal sequences (which should rightly
be emphasized in developmental studies of IAC), it is
possible to apply both the cohort sequential [CS] and
cross-sequential [XS] designs. There is now general
agreement that the CS design is of greatest interest to de-
velopmental psychologists because it explicitly differenti-
ates IAC within cohorts from IEV between cohorts (cf.
Baltes & Nesselroade, 1979; Schaie & Baltes, 1975). Not
only does the CS design disentangle the effects of 4 and
C, completely confounded in simple cross-sectional de-
signs, but it also permits a check of the consistency of age
functions across successive cohorts, thus proving to be of
greater external validity than the single cohort longitudi-
nal design.

Again the critical assumption in the CS design is that
there are no time-of-measurement effects present in the
data; this assumption is most parsimonious for develop-
mental psychologists for whom age and cohort are likely
to be of primary interest. Nevertheless there may be pe-
riod-specific effects present in the data, either because of
“true” period effects or because of confounding of occa-
sion-related internal validity threats such as differences
in instrumentation between occasions. We may therefore

el
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ask: How would the assumption violation of no T effects
be reflected in the CS analysis? Although the specific
perturbations depend upon the particular data matrix
and the sources of effects in that matrix, confounded T’
effects will generally affect both (1) the estimates of 4,
reflected in an analysis of variance design as the main ef-
fect for A and the C by 4 interaction and (2) the esti-
mates of the C effects, since the different cohorts will be
sampled at different time periods. In short all estimated
effects are likely to be perturbed. A simple confounded
main effect for 7 would most likely be reflected in a sig-
nificant C by 4 interacton (Schaie, 1973), for (given a
confounded T effect) we would be likely to discover that
the cohorts differed in maturational pattern simply be-
cause they were sampled at different time periods.

This conclusion leads to an interpretational paradox:
We cannot distinguish a true C by 4 interaction from a
confounded 7 main effect, once a C by 4 interaction has
been obtained in the CS analysis, unless we have a strong
theory which not only hypothesizes a true 4 by C inter-
action but also specifies (1) the cohorts over which the in-
teraction holds and (2) the direction of the A4 effect in
each cohort. When such specification is possible, we may
examine the pattern of effects to determine if the ob-
tained C by 4 interaction matches our theoretical specifi-
cation; if it does not, then some time-related confound is
relatively more likely. While a significant C by 4 inter-
action which is inconsistent with, or not predicted by,
our theory may indicate the presence of a time-related
confound, it could also be a reflection of a true C by 4 in-
teraction which is not of the form specified by our model.
The absence of a C by 4 interaction is not sufficient evi-
dence to conclude that no confounded 7 effects exist; the
power of our test of interaction may not detect its pres-
ence, or the effects might be localized to a small subset of
occasions, in which case our estimates of 4, C, and 4 by C
effects will be biased. This is the essence of the interpre-
tational indeterminacy in sequential analysis: If the as-
sumptions which justify the design are violated, the effect
estimates obtained are to some degree inaccurate. Given
a strong theory about the nature and direction of esti-
mated and confounded effects, the interpretational
problem may be reduced to estimating the relative likeli-
hood of confounded T effects; given the pattern of effect
estimates, but in the absence of strong theory, the mean-
ing of the pattern of results from the CS (or any other se-
quential design) may remain obscure.

One of the positive implications of the relationship of
strong theory to the interpretation of sequential designs
is that the theory may sufficiently specify the pattern of
effects so that an invalid design (i.e., one in which the
major assumption is violated) may actually provide use-
ful information about the confounded effect. Consider
the cross-sequential [XS] design, which crosses C and T’
under the assumption of no 4 effects. A developmental
psychologist might well ask: Why should I estimate such
a design if effects of A are my primary interest? There are
two points to be made in answering this question: (1)
The XS design may be applied when longitudinal data
are available only for a limited number of measurement
occasions (time periods) but a wide range of cohort
groups and (2) given a strong developmental theory
about the nature of the confounded 4 effects, a misspeci-
fied XS design (in the sense that 4 effects are nonzero)

99 lLongitudinal Methods

may provide valuable information about the significance
of 4 effects in both the T and the C by T effects. With re-
gard to the first point, the XS design is feasible with only
two measurement occasions, while a C§ design requires
at least three. The number of measurement occasions re-
quired to estimate CS designs which span a relatively
large age and/or cohort range can be prohibitive were
we to insist that no analysis of the data should be per-
formed until the CS design appropriate to the research
question was possible.

To illustrate this point consider again Figure 7-1. A
CS design following three cohorts (1880 to 1900, say) over
an equivalent 20-year age range (10 to 30, say) would re-
quire sampling from 1890 through 1930; an XS design
following subjects longitudinally for 20 years would ini-
tially be possible in 1910. The CS design is still the
method of choice, in that it provides convergent infor-
mation on the age span 10 to 30 over three separate co-
horts, but the misspecified XS design provides some in-
formation about development in that age span which,
accompanied by theoretical notions about the develop-
mental phenomenon, may be used to make preliminary
inferences on the pattern of age effects as represented
(confounded) in the T and C by T parameters. Schaie’s
early work on the sequential analysis of intelligence
began by assuming misspecification in an XS design and
attempting to draw preliminary inferences regarding C
and A effects (cf. Schaie, Labouvie, & Buech, 1973;
Schaie & Strother, 1968). It is always preferable to esti-
mate the “true” parameter effects from the appropriate
design—i.e., one which makes the correct limiting as-
sumptions; however, it will often be the case that the de-
velopmental psychologist must settle for something less
than the optimal design, if only temporarily.

Schaie’s “Most Efficient Design.” Once we allow for a
stepwise approximation to the CS design as measurement
occasions are added to the data matrix, the question
arises on the best way to sample from the age-by-cohort
matrix. Most investigators who wish to ask questions
with respect to both IAC and IEV nevertheless would
like to limit the time course of their longitudinal sam-
pling. In addition theoretical notions about different de-
velopmental models applying differentially to subsets of
variables in a multivariate set of measures may suggest
the need to apply alternative sequential designs to differ-
ent subsets of dependent variables. Schaie (1965) initially
proposed a sequential sampling design termed the “most
efficient design,” which maximizes the potential design
applications, given that sampling must begin at some
occasion, defined as Time 1. It is as follows: ’

1. Draw a random sample from each cohort within the age
range of interest and measure at Time 1. (Score 11)

2. Obtain a second measurement on as many subjects as
possible who were initially tested at Time 1 at Time 2.
(Score 12)

3. Draw a new random sample from each cohort tested at
Time 1 plus a sample from the next younger cohort and
measure at Time 2. (Score 22)

4. Get a third measurement on as many subjects as possible
that were measured at Time 1 and Time 2 at Time 3.
(Score 13)

5. Obtain a second measurement on as many subjects as



possible who were first tested at Time 2 at Time 3. (Score
23)

6. Draw a third random sample from each cohort tested at
Time 2 plus a sample from the next younger cohort and
measure at Time 3. (Score 33)

Note that Scores 11, 22, and 33 provide a cross-sec-
tional sequence while Scores 11, 12, and 13, or 22 and 23,
will provide longitudinal sequences. Given such data
collection it is possible to examine the cohort-sequential
model for each set of two cohorts (Scores 11, 12, 22, and
23) or to examine the cross-sequential model for two rep-
lications (Scores 11 and 12 as well as 22 and 23). Scores
13 and 33 will permit controls for practice and experi-
mental mortality (see following and Schaie, 1972b,
1977).

Remaining Confounds in Longitudinal
Sequences: Possible Solutions

Confounds Not Directly Resolved by the Cohort-Sequen-
tial Strategy. In their pure form the previously described
approaches will aid the developmental psychologist to
estimate maturational effects while controlling for con-
founds due to history and certain simple selection effects.
Other threats to validity of developmental studies can
often be controlled by further design refinements.

Experimental mortality. As discussed briefly before,
human panels are rarely maintained in their entirety
during a longitudinal study. One must check therefore
whether subject attrition has been random or systematic
with respect to the dependent variables. The most
straightforward approach is upon completion of the first
follow-up test to segregate Time 1 scores into those for
subjects who were successfully retested at Time 2 and
those who failed to reappear. Although most investiga-
tors of this issue have found that dropouts are, on the av-
erage, less able and have different personality character-
istics, it does not follow that dropouts will have different
age patterns than do the retest survivors (e.g-, Schaie,
Labouvie, & Barrett, 1973). It does not follow either that
systematic dropouts will be maintained upon subsequent
retests (Gribbin & Schaie, 1978). Whether or not attri-
tion is subject to secular trends or to cohort effects can be
assessed by suitable modifications of the simple sequen-
tial models (cf. Schaie, 1977; Schaie & Parham, 1974).
The most straightforward control for experimental mor-
tality involves the comparison of cross-sectional se-
quences (e.g., following successive samples tested only
once from the same cohort such as Scores 11, 22, and 33).
The problem here is in increased sampling variation and
the inability to consider IEV in IAC.

Testing effects. When ability tests are given repeatedly,
it is possible that substantial practice effects occur (e.g.,
Hofland, Willis, & Baltes, 1981). Also the administration
of attitude scales or personality tests may tend to pro-
duce modification of attitGdes or social desirability
values of questionnaire items. A direct test of practice ef-
fects is possible by comparing performance of individuals
of the same age at the same point in time but who differ
in level of practice (e.g., comparison of Scores 12 and 22).
Interaction of practice with age, cohort, or time-of-mea-
surement effects can be studied, as well as the possible in-
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teraction of practice and experimental mortality. All
such designs, however, require addition of further fol-
low-up data collection and a combination of cross-sec-
tional and longitudinal sequences (cf. Schaie, 1977, for
details).

Changes in instrumentation. The need to maintain the
same methods of data-collection reduction and analysis
across measurement occasions is obvious, since changes
in instrumentation will introduce time-of-measurement
effects in the data. An additional instrumentation prob-
lem in longitudinal studies conducted over extensive pe-
riods of time is that it may become unavoidable to
change part or all of the assessment battery. This may be
the case because tests given to subjects when they were
children may no longer be valid for the same subjects as
adults. Batteries may also require change when tests shift
in validity due to cultural change affecting their con-
struct validity (cf. Gribbin & Schaie, 1977). In such cases
control samples may be needed to whom both old and
new instruments have been administered. Alternately it
may be possible to compare factor scores upon the appli-
cation of appropriate techniques of comparative factor
analysis (Joreskog & Sérbom, 1979).

Statistical regression. Observed changes in level in lon-
gitudinal studies may be no more than consequences of
insufficient reliability of measurement instruments. Par-
ticularly in the case where comparison of several levels of
ability or standing on other classificatory dimensions is
sought, regression effects need to be examined. A general
discussion of this problem is provided by Furby (1973),
and a method proposed by Baltes, Nesselroade, Schaie, &
Labouvie (1972) may be useful in assessing the extent of
the problem. In that method, bottom and top scores are
divided at Time 1 and compared at Time 2; if perform-
ance gradients are not parallel, bottom and top scorers
are then divided at Time 2 and compared at Time 1. Re-
gression effects are demonstrated if the gradients ob-
tained under the two methods show opposite direction.

True time-of-measurement effects. When secular trends are
expected as in short-term studies, it may be reasonable to
switch to one of the alternate strategies deduced from the
general developmental model. For example for periods of
the life span where little developmental change is ex-
pected, the XS model might then be appropriate. Like-
wise where cohorts are defined as narrow bands with lit-
tle likelihood of substantial cohorts shifts, the TS model
may then be reasonable to test for time-of-measurement
effects as contrasted to age differences (see Schaie & Par-
ham, 1974).

Sampling bias and volunteer behavior. Here only collateral
studies or knowledge of the relation between parent pop-
ulation and obtained samples will help. One such collat-
eral study might be to investigate volunteer behavior
under alternate conditions both with respect to rate of
responding and performance on the dependent variables
of interest. An example of such a collateral study has
been reported by Gribbin and Schaie (1976) as to the ef-
fect of offering or not offering a monetary incentive. In
the latter study no differences were found in rate of vol-
unteering or performance in intelligence tests, but some
personality questionnaire differences were noted.
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Effects of changing populations. Secular changes in the
demographic composition of a population present difhi-
culties for obtaining comparable samples in sequential
designs. Any changes over time in population character-
istics will tend to produce samples which cannot be as-
sumed to differ only in age, birth year, or time tested. If
the population is changing, it may be desirable to shift a
sampling without replacement to a sampling with re-
placement model (e.g., Gribbin, Stone, & Schaie, 1976).
It may even be appropriate to attempt to match samples
on certain characteristics (although matching often cre-
ates as many problems as it solves). In any case, it be-
comes most important in sequential sampling for the re-
searcher to have good demographic information about
the population from which a panel is drawn, as well as
information about shifts in population characteristics
over the time frame of the longitudinal study.

Additional Design Considerations

In addition to attending to the confounds inherent in
designs analyzing longitudinal and cross-sectional data
matrices, the developmental psychologist must consider
several other issues relevant to selection of a sequential
design for a given research application. Several of these
theoretical and practical considerations are discussed in
this section.

Unequal Sampling Intervals. A potential source of
problems for data analysis and interpretation in sequen-
tial designs is the use of unequal sampling intervals over
time, where disproportionate numbers of years intervene
between occasions of measurement. An example would

be a study in which the initial measurement occasion
was, say, 1980, and subsequent testings occurred in 1985,
1986, 1990, and 1995. These unequal intervals of mea-
surement require special analytic techniques if age is to
be treated as an interval scale in estimating aging or
growth-curve parameters (see following); moreover, the
unequal intervals will have the effect of “deorthogonal-
izing” the age or time factor with the cohort factor. Un-
equal intervals of measurement do not produce insur-
mountable analysis problems, but they increase the
complexity of the analysis procedure and should be
avoided in the name of parsimony unless special consid-
erations relevant to the problem area require them.

Unequal Factor Intervals. Another design problem in
sequential strategies arises when the two factors included
in the design involve different time spans. This issue is
not isomorphic with the unequal sampling intervals
problem, for here we refer to different numbers of levels
of each factor (be it 4, C, or T) even when the time in-
terval for each of the factors is held constant. Figure 7-2
illustrates the distinction; in the lower panel (Figure
7-2B) the unequal factor interval problem arises because
more levels of C are measured than are levels of 7. This
type of unequal interval will be quite common in se-
quential sampling, because it is always possible to sam-
ple a wide range of birth cohorts at a single point in time,
and replicate sampling over time would result in a ma-
trix which contains a wider cohort range than a time
range (at least) until the time span (in years) between
first and most recent measurement occasions equaled the
time span (in years of birth) between the most recent and
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A. An equal time interval CS design (3 cohorts, 3 ages, 20 year span)
1880 1890 1900 1910 1920 1930
COHORT 1890 1900 1910 1920 1930 1940
1900 1910 1920 1930 1940 1950
1910 1920 1930 1940 1950 1960
1920 1930 1940 1950 1960 1970
1930 1940 1950 1960 1970 1980
10 20 30 40 50
Age
B. An unequal time interval CS design (4 cohorts, 2 ages, 30 year cohort
span, 10 year age span)
1880 1890 1900 1910 1920 1930
1890 1900 1910 1920 1930 1940
COHORT 1900 1910 1920 1930 1940 1950
1910 1920 1930 1940 1950 1960
1920 1930 1940 1950 1960 1970
1930 1940 1950 1960 1970 1980
107 20 30 40 50
Age

Figure 7-2 Schematic illustrating the unequal time interval problem for a cohort-

sequential design

.



. qential 2 after two times of measurement will

probably contain disparate time spang, with more ‘co-
horts than times of measurement in the design. In fact
the cross-sequential analyses of intelligence by Schaie
and co-workers (e.g., Schaie, Labouvie, & Buech, 1973;
Schaie & Labouvie-Vief, 1974; Schaie & Strother, 1968)
involve analyses of such disparate time spans.

Unequal time spans produce a type of “bias” in se-
quential designs—namely, that the expected value of the
variance components for each factor will be unequal and
in direct proportion to the ratio of the different time
spans (Adam, 1977; Botwinick & Arenberg, 1976). Thus
the differences in time spans in the factors will be re-
flected in an analysis of variance as in differences in the
size of omnibus F-ratios (that is, F-ratio testing the null
hypothesis of equivalence of all the marginal means for
the factors) or in different values for proportion of vari-
ance estimates such as the intraclass correlation or W2 If
the cohort factor is sampled over 20 years of birth and
the time factor is sampled over five years of measure-
ment, then we would expect that the omnibus F-test
testing the hypothesis of no cohort effects would be
roughly four times larger than the omnibus F-test for no
time effects even if the two factors had roughly the same
magnitude of effect for each unit of time on our interval
scales (i.e., years).

This effect is a natural consequence of the unequal
time intervals and is not a source of bias in the statistical
sense of bias in estimators. The omnibus F-test in both
cases is the proper test of the null hypothesis of no effects
across all levels of the factors involved; as the number of
levels of the factor increases, the likelihood also increases
that at least two of the subclass means are reliably differ-
ent. Thus the unequal time intervals do not “bias” the
results and do not in any way limit the investigator to
using equal time spans in sequential designs. The pri-
mary effect of unequal intervals is that the magnitude of
F-ratios or proportion of variance estimates cannot be
used in a direct comparison of the relative importance of
the two factors under study. Using our previous example
it would be erroneous to claim that a cohort effect is
more important than the time effect simply because the
proportion of variance for cohort was greater, since that
pattern would be predicted by the unequal time intervals
alone. A better test of the hypothesis would be that the
ratio of variance accounted for exceeds a level reliably
greater than that expected by the disproportionate time
spans alone.* In the presence of unequal time spans, the
investigator should be careful not to make mistaken in-
ferences on the relative importance of the two effects
being estimated; however, there need be no worry that
the significance tests are invalidated by the unequal in-
tervals.

Age, Cohort, and Time as Continuous Variables. The
argument could be made that descriptive inferences

4 Botwinick and Arenberg (1976) criticized Schaie and co-
workers for direct comparisons in cross-sequential analysis using
disparate time spans. Their criticism was recognized by Schaie and
Parham (1977) as valid (with respect to the disparate time spans
only). The latter paper reported on equal time-span_cohort-se-
quential analyses, in which unweighted comparison of F ratios was
justified.
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rts initially sampled. ‘!;hus a cross-se--

using the timegrdatcd variables age, cohort, and time are
less than maximally powerful unless these variables are

i .

contintious and not as categorical variables.
Under this argament the sequential designs discussed
above should not arbitrarily categorize these variables
and use analysis of variance but treat them as continuous
and use multiple regression (e.g., Buss, 1979-1980). Since
multiple regression and analysis of variance are func-
tionally isomorphic (Cohen & Cohen, 1975; Kerlinger &
Pedhazur, 1973) the question is not one of appropriate
analysis technique but whether too much information is
lost by pooling the continuous time intervals into dis-
crete categories. The loss of information obviously de-

" pends on the size of the categorical intervals pooled and

the within-category covariation thereby ignored. In gen-
eral we suspect that the regression approach is not likely
to yield vastly different inferences from the analysis of
variance approach in practice as long as sample sizes are
not small (say not less than ten per cell) and the time in-
tervals defining age or cohort are not large (say, less than
ten years). Part of the reason for our conclusion is that
chronological age per se is an imperfect measure of bio-
logical, psychological, and social aging (Wohlwill, 1973);
hence, pooling over small intervals is not likely to lose a
great deal of predictive power, given the measurement
error inherent in the chronological age variable. We rec-
ognize that regression approach has probably been un-
derused in sequential data analysis, primarily because
the sampling procedures (measurement at discrete time
intervals) used in longitudinal research led directly to the
use of categorical analysis (i.e., analysis of variance)
methods.

Practical Issues. The preceding discussion leads di-
rectly into consideration of the following questions: (1)
How large a time interval should exist between measure-
ment occasions? (2) How wide a range of ages and/or co-
horts should be sampled? and (3) How large should the
sample size be? General answers to these questions can-
not be given since they depend directly on the content
area of interest, the developmental hypothesis to be
tested, and the level of prior knowledge about the phe-
nomenon under study. Consideration of the length of
time interval in longitudinal sampling depends upon the
tradeoff between the need to measure change in the min-
imum time possible and the concern that repeated test-
ing in short periods of time will greatly increase the prob-
ability of unwanted practice effects. Consideration of the
size of the age or cohort range to be sampled similarly
depends upon the hypotheses the investigator has about
the critical developmental periods and the range of birth
years over which generational differences are expected.
In general it is probably desirable to include a wider
range of ages and/or cohorts than are hypothesized to
show differences, particularly in an initial exploratory
study, so that the hypothesis may be falsified with respect
to certain ages and/or cohorts; however, the inclusion of
additonal levels of cohort and age must be weighed
against the cost of including additional subjects and
measurement occasions in the design. With respect to
sample size, the investigator may wish to perform a
power analysis (Cohen, 1977) to predict how many sub-
jects will be required to yield statistical significance for a
lower bound estimate of effect size (assuming one is
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available); however, in longitudinal sampling one should
allow for a rate of experimental mortality in developing
this estimate. The attrition rate will depend upon the
nature of the population and the sampling procedure
(e.g., Rosenthal & Rosnow, 1975); in Schaie’s studies of
unpaid volunteers from a prepaid health plan, sampled
at seven-year intervals, attrition rate in the longitudinal
sequences has been roughly 40 percent (Schaie, 1979).

Decision Rules for Age, Cohkort, and Time Effects. As
discussed before, one of the problems in implementing a
sequential design approach is the consequence of model
misspecification and the difficulty in drawing valid infer-
ences on the presence of age, cohort, and period effects in
the absence of strong theoretical posture on the likeli-
hood of these effects being present in the data. Originally
Schaie (1965) attempted to formulate some decision rules
for deciding on the presence or absence of the three ef-
fects by comparing the results from different sequential
analyses of the same data matrix, a procedure criticized
by Baltes (1968) and Buss (1973), among others. Schaie’s
decision rules were based upon an intuitive rationale for
teasing apart effects which, quite frankly, has been
shown to be of questionable validity—and these decision
rules should no longer be taken seriously. The critical
problem is that in the presence of effects for all three fac-
tors, and in the concurrent absence of strong theoretical
specification of the pattern and magnitude of some of the
effects, there is at present (and in the foreseeable future)
no method available for estimating all the three effects
and their interactions simultaneously. The decision rules
by Schaie (1965) will not generally lead to the “true”
model—that is, the one which produces unbiased esti-
mates of all the effects operating in a given domain of
study. An atheoretical exploratory study attempting to es-
timate effects for all levels of age, cohort, and period and
their joint interactions is unlikely to be a fruitful enter-
prise.”

Additional Between-Subjects Factors. The investigator
may wish to partition the between-subjects portion of the
sequential design according to additional individual dif-
ference variables of interest. This partition may be either
a priori (that is, the factor is explicitly included in the
sampling design) or a posteriori (the partition is based
upon individual differences determined during or after
the first measurement occasion). Examples of such

® In her critique of sequential strategies and Schaie’s (19235) de-
cision rules, Adam (1978) demonstrated that the expected value
for C'in a 2 by 2 cross-sequential analysis was equivalent to the ex-
pected value for 4 in a 2 by 2 time-sequential analysis involving
the same cells of a cross-sectional sequence. Adam’s point is well
taken, although it depends upon the assumption that all 4, C, and
T effects are nonzero, and it is limited to the 2 by 2 case. However
Adam goes well beyond this demonstration to infer that it some-
how validates criticisms of Schaie’s work by Horn and Donaldson
(1976) and that it would be preferable to use some two-factor se-
quential design in exploratory situations. Adam is incorrect on
both points; in the latter case her-assumption that all 4, C, and T
effects are nonzero insures that no sequential design will produce
unbiased estimates of the various effects. Since Adam does not
specify her two-factor design, we cannot be more explieit as to the
confounds inherent in the two-factor design she seems to prefer.
Her model is explicitly additive, and thus she would be able to es-
timate all but two of the 4, C, and T effects under the additive ef-
fects model we describe later (although violation of the additivity
assumption would also produce biased estimates).
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grouping factors are sex, experimental mortality (Schaie,
1977), or health status (Hertzog, Schaie, & Gribbin,
1978). In some cases (e.g., experimental mortality) the
partition must be a posteriori since it is based upon
events occurring after the first measurement occasion.
The major problem with a posteriori group definitions is
that they will usually result in a loss of statistical power
caused by the reduction in subgroup size. It is therefore
preferable, wherever possible, to include additional
grouping factors at the time of initial design so that sam-
pling may be done with respect to all subgroups.

The investigator should be aware that the inclusion of
additional groups also incurs the risk of additional sam-
pling by treatment interactions, which may have ramifi-
cations for the age effects being estimated. It might be
the case, for example, that middle-aged women and
middle-aged men would be differentially representative
of their respective populations due to differential avail-
ability for sampling (determined obviously by the type of
sampling procedure employed).

Alternative Designs for Sequential
Data Analysis

Simultaneous Estimation of A, C, and T. An impor-
tant alternative type of sequential designs eschews
Schaie’s standard sequential designs in an attempt to si-
multaneously estimate components for all three factors,
A, C, and T, in a single design. These designs operate on
the same sequential data matrices (i.e., cross-sectional
and longitudinal sequences) but do not use traditional
analysis of variance designs or analysis techniques to es-
timate effects of only two of the three factors, as in the
XS, TS, and CS designs. We refer to these alternative
models as additive effects models since the basic procedure is
to postulate no interaction components involving any of
the three factors, 4, C, and T. Under this additivity as-
sumption, it is possible to simultaneously estimate pa-
rameters for some of the 4, C, and T effects if enough
suitable assumptions (in the form of restrictions on the
effects that are present in the analysis) are imposed to
make all remaining parameters estimable.

The approach was first discussed by Mason, Mason,
Winsborough, and Poole (1973) and later modified and
advocated by Donaldson (1979) and Horn and McArdle
(1980). Consider a cross-sectional data sequence of the
type shown in Figure 7-1. Under the additivity assump-
tion, the cell means in the population may be repre-
sented by the following equation:
where a refers to effects for age ¢, 8 to effects for cohort j,
and v to effects for time £. For any individual, the linear
model will also contain an individual differences error
component:

Vijim = PO T By T et Ciqim @

In normal ANOVA applications, we might impose side
conditions of the form =, = 0, etc., in order to uniquely
define the parameters, and to enable the usual ANOVA
tests of the null hypotheses:

H, alla;=0; Hg all ;= 0; Hy:all ¥, =0 3)



However, given the linear dependency among the three
factors, 4, C, and T, no solution exists for all @8, and y;.
Mason, Mason, Winsborough, and Poole (1973) showed,
however, that if an a priori assumption could be made
regarding the equality of two parameters (e.g., a, = ay),
this assumption would be sufficient to remove the inde-
terminacy and to just identify the other parameters.
Then statistical estimates for these parameters could be
found. They also pointed out that additional assump-
tions of the same type would place further restrictions on
the model leading to overidentification of the remaining
parameters (which has desirable properties in statistical
hypothesis testing of the models). The parameter esti-
mates in such a procedure are, of course, completely de-
pendent upon the accuracy of the equality assumptions
used to enable the estimation procedure; different as-
sumptions would produce different estimates for the ef-
fects.

Donaldson (1979) extended the Mason approach by
treating it under the framework of full rank linear mod-
eling (Searle, 1971; Timm & Carlson, 1975). Horn and
McCardle (1980) further generalized the approach to re-
stricted modeling of mean and covariance structures. In
the process of extolling the virtues of the additive effects
models, these authors have been highly critical of both
Schaie’s sequential designs and traditional ANOVA ap-
plications to analyze them, stating explicitly that the
model testing approach is superior to the “traditional”
sequential strategies approach. It has become important
to consider the advantages and disadvantages of the si-
multaneous additive effects model by itself and in com-
parison to sequential strategies; if the additive effects ap-
proach could be considered invariably superior to the
traditional sequential designs of Schaie, it should ob-
viously supplant them as the method of choice.

Before proceeding with an evaluation of the additive
effects model, let us recognize that there are two separate
criticisms inherent in the Donaldson-Horn-McArdle cri-
tique: (1) that the parametric model of Schaie’s sequen-
tial approach is invalid and (2) that the statistical analy-
sis procedures employed by Schaie in his empirical
applications of sequential strategies are invalid. With re-
gard to the second point, the critique is pointed toward
the application of standard ANOVA techniques. There
is no question that the ANOVA procedures used by
Schaie (e.g., Schaie & Labouvie-Vief, 1974; Schaie and
Strother, 1968)—namely, use of unweighted means, uni-
variate ANOVA on multiple dependent measures—are
dated by more sophisticated multivariate approaches (of
the kind we outline later). Moreover it is certainly true
that Schaie and colleagues’ previous application of tra-
ditional ANOVA techniques emphasized interpretation
of omnibus F-tests and did not focus on estimation of in-
dividual effects (i.e., the as etc.] or on a priori or a poster-
iori contrasts among cell means in order to delineate
more precisely the source of the significant differences.
Comparisons among individual-cell means were done on
the basis of longitudinal 6F cross-sectional gradients
across observed means. The use of classic univariate
ANOVA models is no longer the staple of Schaie’s statis-
tical analyses; in any case it should not be the focus of a
discussion of the merits of the parametric models of the
additive effects approach. Having now confessed past
“sins,” we turn to the issue at hand!
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In our view the additive effects model represents an
important contribution to the area of sequential method-
ology, but it is just as flawed and imperfect as Schaie’s
traditional sequential designs, for it is no more or less
valid than the assumptions invoked to enable estimation
of the 4, C, and T effects. In the case of the additive ef-
fects model, there are two sets of assumptions: (1) All in-
teraction effects are zero and (2) at least two, and possi-
bly more, main effect contrasts are equal. Donaldson
(1979) and Horn and McArdle (1980) are both quite ex-
plicit on the dependence of the estimates of the additive
effects model on the validity of the assumptions of the
second type, but they completely ignore the importance
(in our view, the more critical importance) of the validity
of the assumptions of the first type. Similarly the validity
of the XS, TS, and CS designs is contingent upon the as-
sumption that the unanalyzed components are all zero.
Both the traditional sequential strategies and the addi-
tive effects model suffer from a common problem: Given
invalid assumptions, we obtain inappropriately biased
and invalid effect estimates.

We may formalize the problem in the following way.
Given a fixed range of ages, cohorts, and periods of mea-
surement, a general linear model for the means in the
population is:

Py = U +
o+ B+ v + @B)y; + (av)u + By)x t+ (@BY)iik

where the joint terms (e.g., off) denote interactions. For a
given population and construct(s), some or all of the ef-
fects may be zero, but the preceding equation describes
the general case in which all effects are nonzero. In the
equation we are indicating true population parameters,
not statistical estimates of those parameters. The prob-
lem is that, although the effects for all the terms in
Equation 4 may be present in the population (all are in
principle theoretically distinct), the linear dependency
among the measures of 4, C, and T makes it impossible
to estimate all the effects independently. In fact the lin-
ear dependency precludes one from ever estimating the
three-way interaction among 4, C, and T, even though it
might be theoretically meaningful. If one wishes to esti-
mate all the possible effects for any given two-way inter-
action, say (af);;, then none of the other effects for either
of the remaining two-way interactions is estimable. If
one wishes to estimate all the effects for two of the main
effects, then none of the effects for the remaining factor is
estimable. In all cases the design is limited by the degrees
of freedom contained in the sampling design, which is of
“deficient rank” with respect to 4, C, T because of the
linear dependence among the factors.

Given this state of affairs, the investigator may only
obtain valid effect estimates for some of the population
parameters under the assumption that the parameters
not estimated are in fact zero in the population. An X§
design assumes all terms involving a—ie., a; (@f);,
(aY) i and (afy);—to be zero; a CS design assumes all
terms involving v, to be zero. The additive effects model
assumes all interactions—i.e., (@B);, (@V)ux (BY)y, and
(aBy);+—to be zero and imposes at least one additional

@

assumption on the main effects (of the form a; + 0y etc.)

in order to estimate the remaining effects. Wnen all 1s
said and done, none of these models is applicable to all



developmental problems. Theorists are likely to differ on
the merits of any of these models to a given problem;
Glenn (1976) and Baltes, Cornelius, and Nesselroade
(1979) doubt the usefulness of the additive effects model
because they suspect that the hypothesis of no interac-
tions is rarely, if ever, likely to be true, while Donaldson
(1979) and Horn and McArdie (1980) question the valid-
ity of sequential strategies because they doubt that all ef-
fects attributable to one of the A, C, and T factors are
ever likely to be zero in the population. This is the di-
lemma of descriptive research designs involving parame-
tric treatment of 4, C, and T effects; we must make limit-
ing assumptions to estimate any of the effects, and these
assumptions must be theoretically sound for the esti-
mates to have maximal utility. As pointed out by Baltes
et al. (1979), there just is no purely statistical solution to
the problem.

Before concluding this section we should note another
potential problem with the additive effects model. The
simultaneous estimation of 4, C, and T effects might
mislead one into assuming that meaningful estimates of
all 4 and C effects could be obtained from simply taking
two cross-sectional samples (i.e., the smallest possible
cross-sectional sequence). In fact a just-identified solu-
tion attempting to estimate all 4 and C effects (except
two which are set equal) is unlikely to lead to useful esti-
mates because of the presence of a high degree of non-
orthogonality among the effect contrasts used in the sta-
tistical analysis. There will be a powerful suppressor
effect operating if all the estimates are made simulta-
neously. If the investigator is interested in estimating 4
and C effects, there is no better matrix of observations
than the age-by-cohort matrix discussed previously in
" the context of CS designs. As the cross-sectional sequence
increases in measurement occasions, then an additive ef-
fects design estimating 4 and C effects will experience a
decreasing problem with suppression with respect to 4
and C eflects (the same principle applies to longitudinal
sequences). Thus it is not the case that the additive ef-
fects model obviates the need for extended sequential
sampling.

As stated before we believe the additive effects model
to be a significant contribution to the area of sequential
methodology, not because it should supplant other se-
quential designs but because its proponents have demon-
strated how the sequential designs of Schaie are only one
way of partitioning a sequential sampling matrix. Given
theoretical justification other types of designs may also
be formulated. Indeed one possibility (which we have not
thought through in any detail) is that, under a theoreti-
cally sound set of restrictions on different A, C, and T ef-
fects, it may be possible to also estimate some partial in-
teraction effects (cf. Boik, Note 1) in the same design.
The fact that individual effects may be explicitly repre-
sented in linear models by a set of vectors of contrast
coefficients describing relations among the cell means in-
creases the investigator’s flexibility in matching theory to
design and estimation. -

Replacement of Age, Cohort, and Time -

Since age, cohort, and time actually represent marker
variables (Wohlwill, 1973; see preceding) for underlying
causal processes, it is undoubtedly the goal of develop-
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mental explanation to replace these variables with the
process-oriented variables thought to actually determine
the 4, C, and T effects. As pointed out by several authors
(e.g., Baltes et al., 1979; Buss, 1979-1980; Schaie,
1977-1978), such replacement requires a valid theory for
the source of the underlying effects and a suitable
method for measuring the processes under study.

The advantage of study of the “real meaning” of co-
hort membership (Baltes et al., 1979; Rosow, 1978) or
age from a strictly descriptive viewpoint is that it implic-
itly removes the linear dependency among 4, C, and T
by replacing 4 or C with process variables which are ap-
plicable to all levels of the other two factors (see Mason
et al., 1976). One could then proceed to estimate de-
scriptive parameters for 4, C, and T effects without the
constraints discussed in the previous section.

The ultimate goal, however, would be to replace all
three factors with process variables and to account for
change over time in behavior on the basis of explicit
knowledge of antecedent-consequence relationships
(Baltes & Willis, 1977, 1979). The ideal method for pro-
ceeding from construct and variable definition to statis-
tical estimation in such causal models is the use of struc-
tural regression (Baltes, Reese, & Nesselroade, 1977,
Buss, 1979-1980; Rogosa, 1979) as outlined by many be-
havioral scientists and mathematical statisticians (e.g.,
Duncan, 1975; Goldberger & Duncan, 1973; Heise, 1975;
Joreskog, 1973). Structural regression methods provide
the most comprehensive means by which causal influ-
ences may be modeled among nonmanipulable individ-
ual-differences variables of the type inherent in develop-
mental research. A detailed examination of the issues
inherent in causal modeling is beyond the scope of this
chapter; the reader is referred to the references just cited.
Further discussion of structural regression approaches in
the context of developmental analysis is given in the fol-
lowing sections.

STATISTICAL METHODS FOR
DEVELOPMENTAL ANALYSIS

Developmental Hypotheses
about Means

The majority of developmental studies are interested
in testing hypotheses about change in level of perform-
ance over time. When the hypothesis involves develop-
mental change in the population, interest focuses on
change in the population means with age, which may be
summrarized in an average growth curve. With respect to
the population means, the developmental psychologist
wishes to know (1) the direction of change in mean levels
with age (time) and (2) the magnitude of developmental
change, expressed in the unit of measurement of the in-
terval scale X. Developmental patterns in performance
level could be multidirectional (nonmonotonic), mono-
tonically increasing, monotonically decreasing, or stable
with increasing age. Knowledge of the direction of devel-
opmental change will rarely suffice, however; usually the
investigator requires an estimate of the magnitude of
such change.

The sufficiency of any set of summary statistics de-
scribing the average developmental function is depen-

-
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dent upon the complexity of that function. When the
change in means is linearly increasing or decreasing over
time, the magnitude and direction of change may be eco-
nomically expressed as the slope of the linear function—
i.e., change in X per unit time (age). When the develop-
mental function is nonlinear, description of direction and
magnitude of change is more complex. When the devel-
opmental function may be specified, the summary statis-
tics derive from the parameters of a fitted function (e.g.,
a Gompertz curve). Given a nonlinear developmental
function whose exact form is left unspecified, the di-
rection and magnitude of change may be represented in
any set of summary statistics which encapsulate the
mean difference between ages. Two common sets of sta-
tistics are mean contrasts among adjacent ages (occa-
sions) or the regression weights from an orthogonal poly-
nomial equation.

In the multivariate case the investigator would be in-
terested in the consistency of the developmental function
across variates—that is, the extent to which the means
vary in direction and magnitude of change across differ-
ent measures. When the data have been collected for
multiple groups from the population, the investigator’s
interest focuses on the consistency of the developmental
function across groups. Different groups might have
coincident functions (a single developmental function in
common, such that the curves lie on top of one another),
parallel functions (equivalent changes with age but con-
stant mean differences between groups at each age [oc-
casion]), or divergent functions (group differences in de-
velopmental change, with or without group differences
in means at the initial age measured). -

Developmental Hypotheses
about Covariance Matrices

Although most developmental studies have focused on
developmental changes in mean performance levels, de-
velopmental hypotheses about changes in the range and
ordering of individual differences with age may be tested
by examining the appropriate elements of the covariance
matrix of the observations. The variance parameter re-
flects the magnitude of the dispersion of individuals
around the population mean; thus changes in variances
with age indicate age change in interindividual variabil-
ity (IEV). The covariance elements among repeated
measures of a single variable reflect the extent to which
the ordering of individuals about the means is consistent
across measurement occasions. If individuals maintained
fixed positions relative to the mean, the covariance be-
tween the measure at any two occasions would equal the
product of the variances, and the correlation between the
two measures would be 1. Thus the covariances reflect
the stability of IEV with age.

The interpretation of developmental changes in vari-
ance and covariance parameters with age depends in
part upon the ordering of such changes. A systematic in-
crease in variability over tinre might well imply IEV in
intraindividual change (IAC) since the increasing dis-
persion of individuals about the average developmental
function might reflect divergence of individual develop-
mental functions from the average developmental func-
tion. Many complex developmental hypotheses may be
modeled explicitly in terms of their implications for the
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covariance structure of the measurement variable over
occasions.

For the multivariate case the investigator may be in-
terested in the consistency of developmental changes in
variance and covariance elements across multiple mea-
sures, which would be reflected in the similarity of
changes in variance and covariance elements over occa-
sions. If the design involves measurement of multiple
subgroups from the population, interest will also focus on
the consistency of the changes on variance and co-
variance elements between the different groups. As with
group comparisons on means, one can ask whether the
groups show equivalent changes in individual differences
at each point of the developmental function.

Statistical Tests of Hypotheses
concerning Means

As discussed previously most developmental research
questions focus on age changes in the means of a group of
subjects over time. Hypotheses regarding age changes in
mean levels have usually been tested by means of classi-
cal analysis of variance (ANOVA), as have most hypoth-
eses in recent psychological research. Increasingly, how-
ever, methods of multivariate regression have begun to
supplant traditional ANOVA as the statistical approach,
fueled by the increasing awareness that the ANOVA and
regression approaches are basically the same, ANOVA
being a special case of regression with categorical inde-
pendent variables and an orthogonal experimental de-
sign (Cohen & Cohen, 1975). Indeed most statistical
packages which now perform ANOVA actually use re-
gression as the computational technique. One of the
major advantages of using multivariate regression to an-
alyze ANOVA designs (ie., categorical sampling de-
signs) is that it is particularly appropriate for the analysis
of nonorthogonal sampling designs, wherein the cell sizes
are unequal. In sequential data where orthogonality with
respect to the subclass subject frequencies is rarely, if
ever, obtained, the generality of the regression method
for testing hypotheses about the subclass means makes it
the method of choice.

The General Multivariate Regression Model. The
model for multivariate regression (also known as the gen-
eral linear model) has been extensively treated in a num-
ber of texts (e.g., Bock, 1975; Searle, 1971; Timm, 1975).
The general multivariate model for an individual in the
population is:

y=x-B+e ©)

where y is a p X 1 vector of dependent variables, x is a ¢
X 1 vector of independent (predictor) variables, Bisap’
X g matrix of regression coefficients, and gisa p X 1 vec-
tor of error components.

The interpretation of the regression coefficients in 8
depends upon how the independent variables are struc-
tured in x. If, as in the present case, we are concerned
with the analysis of categorical sampling designs, the in-
dependent variables in x must be structured to reflect the
classifications of the design matrix. Generally the
method is to fill x with any set of independent (not neces-
sarily orthogonal) contrasts among the cells in the design
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by using the method of dummy coding (Cohen & Cohen,
1975; Searle, 1971; Timm, 1975). Often this is accom-
plished by defining x as 2 model matrix, A, consisting of
a matrix of ones and zeroes, indicating one effect of the
linear model (i.e., each a4 etc.) in each column of A. A
design matrix of this type is of deficient rank; not all such
effects may be estimated. In fact, when the grand mean
vector g is unknown and must be estimated, none of the
individual effects are separately identified, only differ-
ences among the effects may be estimated (Searle, 1971).
The general procedure is to reparameterize A and Bin
terms of a new basis matrix K and a parameter matrix §,
where the elements of K represent difference contrasts
among the effects of the form §Fa, — ay, etc. The basis
matrix may be selected on the basis of a priori planned
comparisons among the means, in terms of effects speci-
fied by hypothesis, in accord with the “usual ANOVA
constraints,” or by specifying certain effects to be zero; in
each case it is necessary to reduce the number of inde-
pendent linear functions of the effects to the rank of the
matrix A (which is equivalent to the degrees of freedom
in the categorical sampling design).

Once the model is reparameterized to full rank, esti-
mation of the regression coefficients and significance tests
for these effects in terms of hypotheses about the means
follows. The most common method of estimation is the
familiar least squares method. The procedures for multi-
variate significance testing are too complex to be detailed
here (see Bock, 1975 or Timm, 1975); the logic corre-
sponds closely to significance testing procedures for uni-
variate regression analysis of categorical designs (Cohen
& Cohen, 1975). ’

We have to this point ignored the complications in-
troduced by the use of longitudinal (repeated measures)
designs. Before considering longitudinal sequences, we
should point out that the model as specified is well suited
to the analysis of sequential designs using cross-sectional
sequences, where all 4, C, or T effects are represented as
between-subjects effects. The basis matrix simply reflects
the contrasts among the cells for the sequential design
selected. A particularly useful set of contrasts for cross-
sectional sequences is the set of orthogonal polynomial
coefficients; 4 or T effects may be represented in terms of
a polynomial model of a specified degree (see Bock, 1975,
1979).

The presence of nonorthogonality in the sequential
design complicates the analysis considerably. Nonortho-
gonality among the effects arises from two sources: (1)
the subclass frequences (cell sizes) are unequal and (2)
the linear contrasts in K are not orthogonal. The first
source is by far the most common and is the rule rather
than the exception in sequential sampling designs. The
second source would arise if the contrasts were not or-
thogonal in the sampling design, as in the case for the ad-
ditive effects model. In the orthogonal case where the cell
sizés are equal and the contrasts mutually independent,
the main effect estimates are all orthogonal to one an-
other. The order of entry of effects into the regression
equation is then arbitrary and has no effect on the sums
of squares partition among the effects. As is well known,
however, when the design is nonorthogonal, the ex-
pected-mean squares of the main effects are not indepen-
dent but certain terms involve the sum of effects over the
levels of the other factors (Bock, 1975; Searle, 1971). The
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confounding of the main effects and interactions implies

that the order of entry of contrasts in the regression

equation affects the sums of squares associated with each

effect. Thus the usual hierarchical (stepwise) fitting of ef-

fects must consider the consequences of fitting aj before
s say.

These issues have been considered in detail by several
authors (e.g., Appelbaum & Cramer, 1974; Cramer &
Appelbaum, 1980; Herr & Gaebelein, 1978; Overall,
Spiegel, & Cohen, 1975), and there is no consensus on
how the problem should be handled. One approach is to
specify on a priori grounds the order of effects entry into
the regression equation. This hierarchical model requires
that the precedence of certain effects over others may be
specified on theoretical grounds. An alternative ap-
proach is to adjust each main effect by entering its effect
contrasts as the last set of main effects, eliminating the
effects of preceding main effects. This approach is advo-
cated by Searle (1971) and others (e.g., Overall & Spie-
gel, 1969; Overall et al., 1975) as the most valid, espe-
cially when the source of nonorthogonality in the cell
sizes is nonrandom with respect to the factors in the de-
sign. An alternative approach is to use a simultaneous
estimation procedure which includes all effects in the de-
sign. This approach, termed the experimental design model
by Overall and Spiegel (also termed the standard paramet-
ric model, STP, by Herr and Gaebelein) adjusts all effects
by simultaneously eliminating the sums of squares
shared by the other effects in the design. This method is
not available in most multivariate analysis packages
using least squares methods to estimate the linear model.
It is the model available in the maximum likelihood pro-
gram LISREL discussed later.

The problem of nonorthogonality is particularly acute
for analyses with cross-sectional sequences, where all ef-
fects are between-subjects and selection of the nonortho-
gonal method may affect partition of the sums of squares
among 4, C, and T effects. For analyses of longitudinal
sequences, the longitudinal effect (either 4 or 7)) is gen-
erally orthogonal to other between-subjects factors (e.g.,
C, or sex), and the sampling design may be partitioned
into mutually orthogonal subspaces of between- and
within-subjects effects. Then the selection of nonortho-
gonal analysis methods affects only the between-subjects
effects.

Longitudinal Sequences. The analysis of sequential
designs for cross-sectional sequences involves traditional
applications of MANOVA techniques to between-sub-
jects designs; we will not consider this application further
(see Bock, 1975; Timm, 1975). Analyses of longitudinal
data are complicated by the presence of the within-sub-
jects factors, which requires special statistical treatment.
There are several possible statistical approaches to the
analysis of a longitudinal data matrix, including (1) clas-
sical mixed model ANOVA (see Winer, 1971), (2) un-
weighted or weighted MANOVA (Bock, 1979), or (3)
analysis of covariance structures (Joreskog, 1974; Wiley,
Schmidt, & Bramble, 1973). The reader will probably be
most familiar with the classical mixed model ANOVA,
which in fact was used by Schaie and co-workers in many
previous analyses of sequential designs. Advances in sta-
tistical treatment of longitudinal data over the last dec-
ade have badly dated the classical mixed model
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ANOVA, however, and we no longer advocate its use ex-
cept in unusually favorable circumstances. Indeed in the
following sections mixed model ANOVA is discussed
mainly to provide a background for preferred alternative
methods.

General considerations. As discussed before, two sequen-
tial designs are possible, given data from a longitudinal
sequence: the XS design, crossing C with T (repeated
measures on T), and the CS design, crossing C with 4
(repeated measures on 4). We focus on the analysis of the
CS design; the generalization to the XS design is straight-
forward. The presence of the repeated measures facet of
the CS design introduces the random factor subjects into
the design (nested within C groups). Restricting our con-
sideration of the CS design for the moment to the uni-
variate case, the linear model for this design is:

Yu=p+a+B+myt afy + Brij + g (6)

where a; are the j = (1 ...., ) age effects, By are the k = (1,
.o, k) cohort effects, 7, are the effects for the 1 = (1, ..4)
subjects, nested in the kth group, and the remaining ef-
fects are the associated interactions and the individual
error component.

Mixed-model analysis. As is well known the virtue of the
repeated measures design is the increased power of the
statistical tests due to the removal of the subjects effect
from the error term. With more than two levels of the age
factor, the conventional mixed model approach requires
pooling of the error SS over the multiple degree of free-
dom error subspaces. Unfortunately the assumption of
sphericity in the error space necessary for this procedure
is often violated and the traditional mixed model signifi-
cance tests for the age and cohort-by-age interaction will
often have inflated Type I error rate (Greenhouse &
Geisser, 1959; McCall & Appelbaum, 1973).° The two
major solutions to the problem are (1) use of corrected F-
ratios (by adjusting the degrees of freedom) as recom-
mended by Greenhouse and Geisser (1959) or (2) use of a
multivariate significance test for the univariate repeated
measures effects (McCall & Appelbaum, 1973). There is
some debate as to which of these options is preferable for
univariate data (e.g., Rogan et al. 1979); however, given
multiple dependent measures, the multivariate approach
is superior as a method of protecting against the experi-
ment-wise Type I error rate (Bock, 1975).

Multivariate ANOVA for repeated measures. The multi-
variate approach involves the multiplication of the data
(or the matrix of means) by orthogonal contrasts repre-
senting the structure of the repeated measures factor.
Any orthogonal decomposition of the repeated measures
effects will suffice, but for use with sequential data we
recommend the Fisher-Tchebycheff orthogonal polyno-
mials for trend (Bock, 1975). The use of a polynomial
model places the multivariate ANOVA approach in the
general class of polynomial growth curve models (e.g.,
see Guire and Kowalski, 1979; Pottloff & Roy, 1964).

We consider first the univariate case for a CS design.

-

5 The sphericity assumption is necessary for mixed model anal-
ysis; the more frequently cited compound symmetry assumption is
sufficient but not necessary—it is in fact overly restrictive (see
Rogan, Keselman, & Mendoza, 1979).

108 K. WARNER SCHAIE, CHRISTOPHER HERTZOG

The linear model -is more complex (see Bock, 1979;
Timm, 1975); it essentially reduces to the following
equation for the matrix of observed means:

¢ = KOP )
(Bock, 1979; Finn, 1969), where K is a full rank basis
matrix of effect contrasts for between-subjects factors, P
is a_J-1 order matrix of orthogonal polynomials for trend
over age, and © is the matrix of effects to be estimated.
There are several methads of estimating the effects in ©.
The simplest is to select directly a basis matrix K of or-
thogonal contrasts, representing the effects of cohort, and
to use the:/-1 matrix of orthogonal polynomials, P. As
shown by Finn (1969) and McCall and Appelbaum
(1973), the procedure is then to create explicitly a new
matrix of observations by postmultiplying the matrix of
original observations by the orthonormalized transform
of P, creating a new vector of variables, say Z, of order /.
This vector is then partitioned into two exclusive parts.
Since the first column of P is a column of ones (for the
grand mean), the leading element of Z is the weighted
average of all J repeated measures. An analysis of the be-
tween-subjects factorial using z, as a dependent measure
tests the main effects and interactions of the between-
subjects effects. In the CS design, this analysis involves
the K-1 effects for cohort represented in K. The remain-
ing J-1 variates in Z are the repeated measures weighted
by the coefficients for the corresponding polynomial
terms (i.e., linear, quadratic, cubic, etc.). Under the null
hypothesis of no age effects, the expected value of these
weighted variates is zero; hence a test of the hypothesis
that the constant terms equal zero provides a test of the
main effects hypothesis for age (Guire & Kowalski, 1979;
McCall & Appelbaum, 1973). The test of the effects for
cohort on the transformed variates provides a test of the
cohort-by-age interaction. The null hypotheses are tested
by a MANOVA using the J-1 transformed variates as
multiple dependent measures. The multivariate signifi-
cance tests provide omnibus significance tests analogous
to the omnibus tests in the mixed model ANOVA. The
critical point is that testing the main effect for age is ac-
complished by testing the constant terms for the polyno-
mial transforms of the original measures; usually the test
of the constant term (in untransformed data) is of little
interest because the magnitude of the constant is arbi-
trary. Examples of this type of analysis are found in Finn
(1969), Finn and Mattsson (1978), and McCall and Ap-
pelbaum (1973). McCall and Appelbaum (1973) provide
examples of more than one within-subjects factors as
well. Schaie and Hertzog (Note 2) have used this method
in the analysis of CS designs.

The assumptions required for the MANOVA treat-
ment of the univariate data are much less restrictive than
those of the mixed model approach—namely, that the
between-subjects groups have the same general popula-
tion covariance matrix . The MANOVA approach to
repeated measures analysis may be generalized to the
case of P dependent variates by simply performing the
transformation on the P variates simultaneously, making
Z aJ X P matrix. Then the multivariate test of the hy-
pothesis that the (J-1) X P submatrix of means of Z is
null provides an omnibus test of the hypothesis that all
age effects are zero (for all P variates simultaneously).



Questions as to how any significant effects might be
localized in some subset of polynomial terms or in some
subset of the dependent measures may be handled by in-
specting the univariate F-tests following a significant
multivariate F, but this procedure provides no protection
of Type I error rate for the multiple comparisons. A more
elegant procedure is to employ step-down testing proce-
dures (Bock, 1975; Finn, 1969), provided that the trans-
formed variates may be ordered in such a way as to make
the step-down test meaningful with respect to a priori
hypotheses about localization of the significant effects.
The step-down procedure consists essentially of a multi-
variate analysis of covariance, where the preceding P-1
variates are covaried on the pth variate. Ordering the
variates is thus a critical part of the step-down analysis.
The interested reader should consult Bock (1975, Chap.
7) for detailed discussion of the application of the step-
down procedures to the multivariate repeated-measures
design.

Statistical Tests of Hypotheses
concerning Covariance Structures

Many developmental hypotheses are best tested by
formulating statistical models regarding the structure of
covariance matrices taken from longitudinal or cross-sec-
tional sequences. As discussed in the section on statistical
methods, many hypotheses regarding individual differ-
ences in developmental patterns involve examination of
variances and covariances among observed measures.
Furthermore the problems of measurement imprecision
and the inability to manipulate human ‘development
directly have begun to force developmental psychologists
to follow the lead of economists and sociologists and to
consider the utility of causal modeling among latent
variables by means of structural regression techniques. It
is not unreasonable to expect that the next decade will
see a methodological explosion in the form of increased
use and appreciation of methods of modeling covariance
structures by developmental psychologists, particularly
those concerned with life-span developmental phenom-
ena.

Much of the credit for this explosion, if it does indeed
occur, will be given to the Swedish statistician Jéreskog,
whose contributions to the methods of covariance struc-
tures analysis, especially in their application to factor
analysis and structural equations models for longitudinal
data, have been noteworthy. Jéreskog and co-workers,
most notably Sérbom, have not only extended extant
statistical models for, covariance structures analysis but
have also contributed an important method of statistical
estimation and testing of the parameters from those co-
variance-structure models. We do not mean to belittle
the contribution of many other scientists to the theory
and methods of covariance structures analysis (see
Bentler & Weeks, 1979, and Bentler, 1980, for reviews
and a historical perspective on this topic). Nevertheless
Joreskog’s contributions, as exemplified in a generation
of computer programs designed for covariance structures
analysis, seem of primary importance.

-

The LISREL Model. Joreskog and Sérbom (1978)
have developed a highly general model for structural
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equations: LISREL (LInear Structural RELations). The

LISREL model consists of a system of linear structural
regression equations describing the relationships among
sets of observed and unobserved variables. The use of
structural equations systems has been advocated as a
method of assessing the putative cause-and-effect rela-
tions among correlated observed variables when experi-
mental manipulation to achieve causal inference is not
possible (see Duncan, 1975; Heise, 1975). Wright is gen-
erally credited with the development of this approach
(e.g., Wright, 1954), initially termed path analysis, and his
methods have been most frequently utilized in sociologi-
cal research (Duncan, 1975). Path analysis is the term
commonly applied when causal relations are specified
among observed variables. The term structural equations is
used when the variables in the causal system are not nec-
essarily directly measured but may also be hypothetical
construct or latent variables which may or may not be
related to other observed variables (Heise, 1975).

The power of structural equations is that the usual
matrix of regression coefficients among observed or la-
tent variables is not used as an indicator of direct influ-
ences among constructs; instead, the investigator is re-
quired to specify a model regarding a causal sequence
among variables. In general this will imply direct effects
of some variables upon others, indirect effects for some
variables upon others—implying that the usual re-
gression coefficients reflect association through an inter-
vening variable, and no direct or indirect effects of some
variables on others—thus implying the correlation be-
tween variables to be spurious in a causal sense (see
Duncan, 1975; Heise, 1975; Land, 1968). Structural
equations models are particularly useful for longitudinal
analyses (Duncan, 1975; Jéreskog & Sérbom, 1977; Ro-
gosa, 1979) when certain causal sequences are known to
be required by the time-structuring of the data and the
causal axiom, “if a precedes 6, b cannot cause a.” Joreskog
and Sérbom’s LISREL program is a particularly power-
ful method for specifying and estimating structural
equations models. It represents in essence a union of re-
stricted maximum likelihood factor analysis with multi-
variate structural regression equations (Jéreskog, 1973;
Joreskog & Sérbom, 1978). The procedure estimates the
unknown parameters in a set of linear equations re-
gressing . endogenous dependent latent variables (the
variances of which are accounted for by the model) upon
exogenous independent latent variables (the variances of
which lie outside the prediction of the model). Relation-
ships may also be specified among endogenous latent
variables. The latent variables are estimated through the
use of maximum likelihood factor analysis. The model
allows for errors in the structural regression equations
(regression residuals) and errors in the regressions of la-
tent variables on observed variables (errors of measure-
ment). Provided that a given model is identified—that is,
it is a model specifying a unique solution for all parame-
ters—given a set of observed variables, the LISREL pro-
gram will estimate all unknown regression coefficients,
covariance matrices among latent variables, the residual
covariance matrix, and the measurement error co-
variance matrices.

The LISREL model consists of two parts, the mea-
surement model and the structural equations model. The
measurement model specifies how the latent variables
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(factors) are measured in terms of the observed variables;
it is the factor analysis model. The structural equations
model specifies the “causal” relationships among the la-
tent variables; it is the regression model. Space limitation
precludes a detailed specification of the LISREL equa-
tions (see Joreskog & Sérbom, 1978).

There are three types of parameters in LISREL: ¢))
fixed parameters have values which are fixed in advance,
(2) free parameters are unknowns which are to be esti-
mated, and (3) constrained parameters are two or more un-
knowns which are constrained to have the same value.
LISREL is thus a restricted model, for it is necessary to
restrict (i.e., fix or constrain) a sufficient number of pa-
rameters in advance in order to uniquely identify all the
freely estimated parameters. A model is identified if it
produces a unique population covariance matrix X—
that is, there is no arbitrary linear transformation of the
LISREL parameters which produce the same 2. A neces-
sary, but not sufficient, condition for identification is
that the number of unknowns in the linear equations are
equal to or less than the number of observed variances
and covariances. The other conditions for identification
depend upon the model that is specified; treatment of the
identification problem in structural equations may be
found in Joreskog (1979), Joreskog & Sérbom (1977),
Werts, Joreskog, and Linn (1973), and Wiley (1973).

The estimation of the unknown parameters in
LISREL is accomplished by maximum likelihood
methods. The maximum likelihood solution is obtained
by an interactive algorithm which uses the first and sec-
ond derivatives of the fitting function, F (with respect to
the parameter matrices) to find estimates which simul-
taneously minimize F. Details may be found in J6reskog
(1973). One of the chief advantages of LISREL is that
the goodness of fit of the model to the sample data may
be assessed by the value of the fitting function, F, at its
minimum. Given the large sample assumption, F may be
multiplied by the sample size to obtain a value that is
asymptotically distributed as x* with degrees of freedom
equal to the number of elements in S, minus the number
of unknown parameters fitted in the model. In explor-
atory situations, where the true model is unknown and
several alternatives are to be compared, the improve-
ment in fit between two models may be assessed by com-
puting the difference in x* between them, which is also
asymptotically distributed as x* with degrees of freedom
equal to the difference in degrees of freedom between the
models. This procedure is only viable if the models are
nested—that is, if the parameter specification*of one
model is the same as the parameter specification of the
other, excepting some additional free parameters. There
are two important qualifications to this procedure. First,
the sampling distribution of F under repeated model
testings on the same data is unknown, and thus the sig-
nificance tests for x* have unknown Type I error rate.
Repeated model modifications may be capitalizing on
chance fluctuations in sample data to an unacceptable
degree, and any final model should be confined (vali-
dated) in an _independent sample, whenever possible.
Second, the x* test is highly dependent upon sample size
and is sensitive to departures from multivariate normal-
ity in the data. Hence it is possible to obtain a large and
significant % value when the model fits relatively well by
other standards and is, in fact, an acceptable model.
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Absolute x* should not be taken as the only or the ulti-
mate criterion for model acceptance (Jéreskog, 1971).

The most recent version of LISREL (LISREL IV) has
been extended to the simultaneous analysis of multiple
groups. The chief advantage of the simultaneous analysis
in multiple groups is that parameters may be fixed or
constrained to equality across groups. The ability to con-
strain parameters across groups is particularly useful, for
an investigator may then systematically test hypotheses
about the equivalence of unknown parameters across
groups of subjects. The basic procedure is to estimate the
same model in all groups with parameters of interest
constrained to equality between groups, and then to esti-
mate the same model with the parameters free to vary
between groups. Then the difference in x° between the
two models represents a test of the null hypothesis of
group equivalance in the parameters.

Analysis of Repeated Measures Designs. Covariance
structures analysis of repeated measures designs involves
the use of contrast coefficients to define latent variables,
for which means (effects) and variances (variance compo-
nents) may be estimated. LISREL may be used as a gen-
eral model to analyze repeated measures designs by spec-
ifying the model as outlined by Bock and Bargmann
(1966), Joreskog (1974), Scheifley and Schmidt (1978),
and Wiley, Schmidt, and Bramble (1973). The basic
procedure is to use a matrix of contrasts to define the la-
tent variables in the measurement equations, then the
variance of the latent variables are the variance compo-
nents associated with the effects (see Joreskog, 1974).

In order to analyze longitudinal sequences, multiple
cohort groups must be introduced into the model. There
are several ways in which this type of analysis may be
performed. Joreskog (1979) describes the analysis of
growth-curve models in multiple groups by means of
structural analysis, but by using a model other than
LISREL. The model leaves the covariance matrix 2
unrestricted and models only the means in terms of poly-
nomial constraints. An alternative method of estimating
the growth curve model for multiple cohorts involves
using the simultaneous multiple groups option in
LISREL. With this approach the variance components
model described above is formed by using polynomial
contrasts. The variance components are estimated simul-
taneously across cohort groups. The null hypothesis of no
cohort effects may be tested by fitting a2 model constrain-
ing the variance components to between-cohort equality
versus a model which leaves them free to vary.

The covariance structures approach allows greater
ranges of model specification than does, say, the MAN-
OVA approach. It also does not require the assumption
of homogenous covariance matrices over cohorts. An-
other advantage of the covariance structures approach is
that the simultaneous estimation procedure eliminates
the need for concern about ordering of effects to be
tested—the variance components will be invariant with
respect to ordering of the latent variables in the equa-
tions.

Horn and McArdle (1980) present a method of model-
ing additive effects models for repeated designs using
structural analysis of the moment matrix. The method is
similar to Jéreskog (1979) in that it is left unrestricted,
only the mean vector is structured. Horn and McArdle
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(1980) use equality constraints to specify the 4, C, Tef-
fects over the different groups and occasions.

Restricted Factor Analysis. One of the more impor-
tant LISREL applications for developmental research is
its use for estimating a restricted factor analysis model.
There are two major factor analysis applications that
may be of interest to developmental psychologists: (1)
analysis of measurement properties (reliability) over dif-
ferent age groups and (2) longitudinal factors analysis.

Measurement properties. The use of covariance struc-
tures analysis for estimation of the psychometric proper-
ties of tests has been detailed by Joreskog (1974) and by
Rock, Werts, and Flaugher (1978). The application is
based upon the fact that different models for psychomet-
ric properties may be expressed in terms of a factor anal-
ysis model (Lord & Novick, 1968). The measures are said
to be congeneric if a single factor accounts for the com-
mon variance of the variables. If the factor loadings may
be constrained to be equal, the true score variances of the
tests are equal, and the measures are said to be
tau-equivalent. If both the factor loadings and the
unique variances may be constrained equal, then the
measures are said to be parallel forms, because both true
score variances and error variances are equal (Joreskog,
1974).

Tests of the psychometric properties of tests across dif-
ferent age or cohort groups is an important procedure if
there is reason to suspect that the tests may have differ-
ent measurement properties in the groups. Quantitative
comparisons of mean differences in scores have little
meaning if the tests have fundamentally different mea-
surement properties. A minimal requirement is that the
tests be congeneric measures of the hypothesized con-
struct in all groups with the same units of measurement
(scale). As shown by Rock et al. (1978), the tenability of
the equivalent scales hypothesis rests upon the plausibil-
ity of a model constraining the factor loadings to equiva-
lence between the groups. Provided that the equivalent
scales hypothesis is not rejected, the groups may be com-
pared for quantitative differences in true score means.
Rock et al. provide a detailed description of how hy-
potheses concerning the psychometric properties of tests
may be estimated using a restricted factor analysis
model.

Simultaneous factor analysis tn multiple groups. A similar
application of restricted factor analysis involves testing
the hypothesis of equivalent factor structures in multiple
age groups. Hypotheses of age changes in the factor
structure of intelligence and personality have been ad-
vanced by many (see Reinert, 1970, for a review). The
most common hypothesis is the age-differentiation-
dedifferentiation hypothesis, which states that intellec-
tual structure is initially nearly unidimensional, differen-
tiates during childhood and adolescence to a more
complex multidimensional structure, and then dedif-
ferentiates into a less complex structure in old age. Fac-
tor analytic studies have been cited as evidence for and
a.gainst differentiation in childhood and dedifferentia-
tion in adulthood; much of the contradictory evidence
may be attributed to differing methods of exploratory
factor analysis (Reinert, 1970).

11 Longitudinal Methods

A paper by Meredith (1964) bears directly upon the
issue of appropriate criteria for assessing group differ-
ences in factor structure. Specifically Meredith used
Lawley’s selection theorem to show that, if a factor anal-
ysis model holds for a given population, then selection of
subgroups from the population should still yield an in-
variant factor pattern matrix of raw score regressions of
observed variables on factors. However, the covariance
matrices of observed variables, unique components, and
factors would not generally be equivalent across groups.
Meredith’s paper is of critical importance with regard to
the hypothesis of structural change with age, for it sug-
gests that (1) age differences in standardized factor load-
ings or in factor covariance matrices would be expected
by age selection alone—and therefore cannot be taken as
evidence that the age groups derive from separate popu-
lations in which different factor analysis models hold and
(2) only group differences in the raw score factor pattern
matrix constitute evidence of qualitative age differences
in factor structure (Mulaik, 1972).

The LISREL model represents the ideal method of
comparing groups in factor structure, since the analysis
enables tests of between-groups equivalence in different
parameters using equality constraints between groups
and since the simultaneous analysis uses covariance ma-
trices and not correlation matrices as input data. Exam-
ples of multiple group factor analysis of this type may be
found in Jéreskog (1971), McGaw and Joreskog (1971),
and Bechtoldt (1974). Recent studies using these
methods to analyze age differences in factor structure in-
clude Cunningham (1980), Horn and McArdle (1980),
and Hertzog and Schaie (Note 3).

Longitudinal factor analysis. One of the major benefits
of restricted factor analysis models is their application to
longitudinal factor analysis. Given a matrix of multiple
measures at several occasions, usual exploratory factor
analysis procedures will be dominated by the high co-
variances among replicated measures across occasions,
and will tend to recover what may be termed “test-spe-
cific” factors, one for each measure. Although such a
model has some interesting properties, it does not repre-
sent the optimal model for assessing changes in factor
structure over occasions. Several authors (e.g., Bentler,
1980; Corballis, 1973; Corballis & Traub, 1970) have
suggested alternative longitudinal factor analysis models
which better preserve the longitudinal nature of the
data. The most general longitudinal factor analysis
model seems to be the one specified by Jéreskog and
Sérbom (1977). Their model is similar to Corballis’s
(1973) model except that Corballis’s model is more re-
strictive in requiring standardized variables and factors.
The general approach is to specify an occasion-specific
model—i.e., one in which a particular factor analytic
model is hypothesized to account for the within-occasion
covariance matrix, and with the same factors replicated
over occasions.

The invariance of the solution across occasions can be
assessed by comparing (1) the invariance in the relation-
ship between observed variables and factors across occa-
sions and (2) the stability of factors across occasions. The
hypothesis of cross-occasion invariance in factor loadings
applies only to the maximum likelihood estimators for
the unstandardized factor loadings. Standardized load-
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ings will not be invariant unless the factors have the
same variance across occasions. This is one of the limita-
tions of the Corballis-Traub type longitudinal factor
analysis.

The stability of individual differences across occasions
is indicated in the elements in the factor covariance ma-
trix. Differences in the factor variances would indicate
that the variability of individuals around the factor
mean differed between occasions. The magnitude of the
factor covariances would indicate the extent of consis-
tence in individuals’ relative ranking about the factor
mean; when this matrix is postscaled to a correlation
matrix, then the factor correlations should approach
unity as individuals approach exact maintenance of po-
sition relative to the factor mean. Thus the occasion-spe-
cific model supplies the parameters which were indicated
earlier as being crucial for hypotheses regarding changes
in IEV and of IEV in IAC but in terms of the latent
variables. The fact that these parameters are estimated
from latent variables, thereby eliminating contaminat-
ing influences of measurement error, is an important and
useful property of the occasion-specific longitudinal fac-
tor analysis model. Hertzog and Schaie (Note 3), Jores-
kog and Sérbom (Note 4), and Olsson and Bergman
(1977) provide examples of this approach.

An important additional feature of this longitudinal
factor analysis model is that it can include covariances
among the residual elements. Several authors (e.g., Cor-
ballis, 1973; Sérbom, 1975) have suggested that local in-
dependence of the residuals for replicated variables is un-
likely; the regression residual (or unique components)
from the factor analysis model will contain both random
error and reliable variance, albeit variance specific to the
measure of “true” variance of a trait not common to all
indicators of a factor. Failure to include autocorrelated
residuals in a model where they hold in the population
will perturb all other parameter estimates.

Joreskog and Sérbom’s longitudinal factor analysis
model serves as the measurement model for a structural
equations system designed to estimate the causal influ-
ences among latent constructs. Jéreskog and Soérbom
(1977) discuss this LISREL model in detail. It has two
important features: (1) an autoregressive model among
the longitudinal latent variables and (2) the introduction
of exogenous and endogenous predictor variables (e.g.,
measures of SES, health status). The first-order autore-
gressive model states that between-subjects variation
about the factor mean at a given occasion ¢ + 1 is pre-
dicted only by between-subjects variation about the
mean of a latent variable, 7, at the previous occasion, &

oM =Bimt s ®)

This model is consistent with a simplex (Joéreskog, 1974)
pattern in the correlations among 7’s; correlations de-
crease monotonically as one moves away from the diago-
nal (correlations are highest for adjacent 7’s). This type
of model has found extensive use in time-series modeling
(see Frederiksen & Rotondo, 1979).

The application of multiple occasion structural
models to longitudinal research is discussed extensively
by Kenny (1979) and Rogosa (1979). One of the more
important applications of modeling structural regres-
sions in multiple occasion models is the cross-lagged re-
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gression model. In this model the prediction system for
replicated latent variables conforms to the first-order au-
toregressive pattern described previously, but cross-
lagged regressions are permitted between nonreplicate
latent variables at adjacent occasions. The use of cross-
lagged regressions is intended to isolate a causal sequence
by determining which latent variable provides the great-
est prediction of subsequent nonreplicate latent vari-
ables. The logic is the same as in cross-lagged correlation
analysis, except that the structural regression approach
has several major advantages: (1) It disattenuates the re-
lationships among latent variables of measurement error
in the observed variables; (2) it allows for simultaneous
estimation of a system of lagged regressions of any order
of occasions; and (3) it does not force a standardized so-
lution, thereby preventing any cross-occasion changes in
the variance of the latent variables from affecting the
magnitude of prediction, as reflected in the unstandar-
dized structural regression coefficients (Rogosa, 1979).
These properties of structural regression systems make
the cross-lagged regression system a better general model
for studying causal influences in longitudinal data, al-
though simple cross-lagged correlations may provide a
useful “quick and dirty” test of whether the relationships
are of sufficient magnitude (and of the proper form) to
justify the added time and expense of structural re-
gression analysis.

LISREL models with means. Joreskog and Sérbom
(1980) have described the introduction of means into the
general LISREL model. LISREL may now be used to
estimate means of latent variables, which is extremely

useful for developmental analysis (Jéreskog & Soérbom,
Note 4).
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