Fluid and Crystallized Abilities in the Seattle Longitudinal Study: Cohort Differences in Cognitive Aging and Dying

Denis Gerstorf ${ }^{1}$, Nilam Ram ${ }^{1}$, Christiane A. Hoppmann ${ }^{2}$, Sherry L. Willis ${ }^{3}$, \& K. Warner Schaie ${ }^{3}$

${ }^{1}$ Pennsylvania State University, University Park, PA
${ }^{2}$ University of British Columbia, BC, Canada
${ }^{3}$ University of Washington, Seattle, WA

Symposium The Seattle Longitudinal Study: Unique Opportunities for Developmental Inquiry at the GSA conference Atlanta, GA, November 2009

Acknowledgements

The PennsyIvania State University

Human Development and Family Studies, Gerontology Center
Tamara Goode, Frank Infurna, Jennifer Morack, and Brian Stiehler

Penn State Children, Youth, \& Families Consortium

National Institute on Aging

R37 AG08055 (Schaie)
R21 AG032379 and R21 AG033109 (Ram, Gerstorf, et al.)

Lifespan and life course theory

\square Historical processes and contextual factors shape individual development
(Baltes et al., 1979; Bronfenbrenner, 1986; Elder, 1974; Schaie, 1965)

Later-born cohorts outperform those born earlier in central life domains

- functional health (Crimmins et al., 1996; Manton et al., 2008)
- cognitive functioning (Flynn, 1999; Schaie, 2005)

Do cohorts differ in rates of cognitive aging?

- parallel age changes (62 to 78 years) for cohorts 1900-1925 vs. 1926-1948
(SATSA: Finkel et al., 2007; see also LBLS: Zelinski \& Kennison, 2007)
- steeper 7-year age declines among earlier-born cohorts
(SLS: Schaie, 2008)
--> What is the role of cohort differences in schooling and health?
(HRS: Alwin, 2008; BETULA: Rönnlund et al., 2005)

Cohort Differences in Cognitive Dying?

Terminal decline at the end of life
Late-life cognitive functioning may relate to mortality rather than age
(Kleemaier, 1962; Riegel \& Riegel, 1972; Siegler, 1975)

Precipitous decline in cognitive abilities with impending death
(Bäckman \& MacDonald, 2006; Ghisletta et al., 2006; Sliwinski et al., 2003)

Do cohorts differ in rates of cognitive dying?

- compression of morbidity (Fries, 1980)
- pervasive nature of mortality may diminished previous cohort differences
--> Do positive secular trends generalize to mortality-related processes?
--> What is the role of cohort differences in schooling and health?

Defining the Cohorts Broadly

	Age models			Mortality models	
	Earlier-born	Later-born		Earlier-born	Later-born
Year of birth	$1883-1913$	$1914-1948$		$1883-1913$	$1914-1948$
N	1,537	1,933		853	594

Criteria
\square Sample size (e.g., sufficient number of deceased participants)
\square Overlapping ranges in chronological ages and times-to-death
(ages 50 to 80) (last 25 years of life)

Frequency of Observations by Cohort

Age-Related Analyses
Each cohort encompassed 1,500+ participants contributing 3,000+ data points

Mortality-Related Analyses
Each cohort encompassed 550+ participants contributing 1,600+ data points

Defining the Cohorts Broadly

	Age models			Mortality models	
	Earlier-born	Later-born		Earlier-born	Later-born
Year of birth	$1883-1913$	$1914-1948$		$1883-1913$	$1914-1948$
N	1,537	1,933		853	594

Criteria

\square Sample size (e.g., sufficient number of deceased participants)Overlapping ranges in chronological ages and times-to-death
(ages 50 to 80) (last 25 years of life)

Our cohort distinction overlaps with major differences in ...
... early-life experiences • educational attainment (e.g., compulsory schooling) - educational practices (e.g., progressive curricula) - medical innovations (e.g., antibiotics)
... late-life experiences •entering old age in 1960/70s vs. 1980/90s

The Seattle Longitudinal Study: Sample and Measures

	Age models			Mortality models	
	Earlier-born	Later-born		Earlier-born	Later-born
Year of birth	$1883-1913$	$1914-1948$		$1883-1913$	$1914-1948$
N	1,537	1,933		853	594

The Seattle Longitudinal Study: Sample and Measures

	Age models			Mortality models	
	Earlier-born	Later-born		Earlier-born	Later-born
Year of birth	$1883-1913$	$1914-1948$	$1883-1913$	$1914-1948$	
N	1,537	1,933	853	594	
Fluid	Spatial Orientation (visualize object rotation in two-dimensional space)				
	Inductive Reasoning (identify patterns in a letter series)				
	Word Fluency (list words beginning with letter S)				
Crystallized	Number (solve simple addition problems)				
	Verbal Meaning (recognize vocabulary)				

The Seattle Longitudinal Study: Sample and Measures

	Age models		Mortality models	
	Earlier-born	Later-born	Earlier-born	Later-born
Year of birth	1883-1913	1914-1948	1883-1913	1914-1948
N	1,537	1,933	853	594
Fluid	Spatial Orientation (visualize object rotation in two-dimensional space)			
	Inductive Reasoning (identify patterns in a letter series)			
	Word Fluency (list words beginning with letter S)			
Crystallized	Number (solve simple addition problems)			
	Verbal Meaning (recognize vocabulary)			
Covariates				
\% women	53\%	54\%	48\%	39\%
M education	12.6	14.7	12.8	14.6
\% circulatory diseases	61\%	48\%	58\%	47\%
M age T1			66.0	54.6
M age at death			84.5	76.8

Statistical Procedure: Growth Curve Models

Do earlier-born (1883-1913) and later-born cohorts (1914-1948) differ in ...
... age-related cognitive change between ages 50 and $\mathbf{8 0}$?
Level 1: \quad ability $_{\mathrm{ti}}=\beta_{0 \mathrm{i}}+\beta_{1 \mathrm{i}}\left(\right.$ age $\left._{\mathrm{ti}}\right)+\beta_{2 \mathrm{i}}\left(\right.$ age $\left.^{2}{ }_{\mathrm{ti}}\right)+e_{\mathrm{ti}}$
Level 2:

$$
\begin{aligned}
& \beta_{0 i}=\gamma_{00}+\gamma_{01}\left(\text { cohort }_{j}\right)+Y_{01}\left(\operatorname{cov}_{i}\right)+\ldots+u_{0 i} \\
& \beta_{1 i}=\gamma_{10}+Y_{11}\left(\text { cohort }_{i}\right)+\gamma_{11}\left(\operatorname{cov}_{i}\right)+\ldots+u_{1 i} \\
& \beta_{2 i}=\gamma_{20} \quad \operatorname{Cov}=\text { Gender, education, and circulatory diseases. }
\end{aligned}
$$

mortality-related cognitive change in the last years of life?
Level 1: \quad ability $_{\mathrm{ti}}=\beta_{0 \mathrm{i}}+\beta_{1 \mathrm{i}}\left(\right.$ time-to-death $\left._{\mathrm{ti}}\right)+\beta_{2 \mathrm{i}}\left(\right.$ time-to-death $\left.^{2}{ }_{\mathrm{ti}}\right)+e_{\mathrm{ti}}$
Level 2: $\quad \beta_{0 i}=Y_{00}+Y_{01}\left(\right.$ cohort $\left._{j}\right)+Y_{01}\left(\operatorname{cov}_{i}\right)+\ldots+u_{0 i}$
$\beta_{1 i}=\gamma_{10}+\gamma_{l 7}\left(\operatorname{cohort}_{i}\right)+\gamma_{l 1}\left(\operatorname{cov}_{i}\right)+\ldots+u_{1 i}$
$\beta_{2 i}=\gamma_{20} \quad \operatorname{Cov}=$ Age at assessment, age at death, gender, education, and circulatory diseases.

Do earlier-born (1883-1913) and later-born cohorts (1914-1948) differ in ...
... age-related cognitive change between ages 50 and $\mathbf{8 0}$?
... mortality-related cognitive change in the last years of life?

Cohort Differences in Cognitive Aging:

Higher Levels and Shallower Rates of Decline among Later-Born Cohorts

	Estimate	SE
Fixed effects		
Intercept	45.490^{\star}	0.367
Linear change	-0.389^{\star}	0.021
Quadratic change	-0.007^{\star}	0.001
Cohort	$\mathbf{5 . 7 1 3}^{\star}$	$\mathbf{0 . 3 6 6}$
Cohort x linear change	$\mathbf{0 . 1 5 3 ^ { \star }}$	$\mathbf{0 . 0 1 8}$
Random effects		
Intercept	44.470^{\star}	1.864
Linear change	0.004^{\star}	0.001
Intercept, lin. change	0.285^{\star}	0.066
Residual	19.660^{\star}	0.575

Note. * $p<.01$

Note. Models include gender, education, and circulatory diseases.

Cohort Differences in Cognitive Aging:
 Higher Levels and Shallower Rates of Decline among Later-Born Cohorts

Fluid Abilities:
Inductive Reasoning

Crystallized Abilities:
Verbal Meaning

Later-born cohorts (1914-1948)
Earlier-born cohorts (1883-1913)

Note. Models include gender, education, and circulatory diseases

Cohort Differences in Cognitive Aging:

Higher Levels and Shallower Rates of Decline among Later-Born Cohorts

Fluid Abilities:
Spatial Orientation

Cohort Differences in Cognitive Aging:
 Higher Levels and Shallower Rates of Decline among Later-Born Cohorts

Fluid Abilities:
Word Fluency

Crystallized Abilities:
Number

Later-born cohorts (1914-1948)
Earlier-born cohorts (1883-1913)

Note. Models include gender, education, and circulatory diseases

Research Questions

Do earlier-born (1883-1913) and later-born cohorts (1914-1948) differ in ...
... age-related cognitive change between ages 50 and $80 ?$
... mortality-related cognitive change in the last years of life?

Cohort Differences in Cognitive Dying:

	Estimate	SE
Fixed effects		
Intercept	-0.856^{\star}	0.059
Linear change	-0.023^{\star}	0.002
Quadratic change	$\mathbf{3 . 1 4 9 ^ { * }}$	$\mathbf{0 . 7 9 7}$
Cohort	$\mathbf{0 . 1 3 3 ^ { * }}$	$\mathbf{0 . 0 4 4}$
Cohort x linear change		
Random effects	55.787^{\star}	3.800
Intercept	0.081^{\star}	0.013
Linear change	1.377^{\star}	0.191
Intercept, lin. change	18.001^{\star}	0.854
Residual		

Note. Models include age at assessment, age at death, gender, education, and circulatory diseases.

Cohort Differences in Cognitive Dying: Little evidence for positive cohort differences

Fluid Abilities:
Inductive Reasoning

Crystallized Abilities:
Verbal Meaning

Later-born cohorts (1914-1948)
Earlier-born cohorts (1883-1913)

Note. Models include age at assessment, age at death, gender, education, and circulatory diseases.

Cohort Differences in Cognitive Dying:
 Little evidence for positive cohort differences

Fluid Abilities:
Spatial Orientation

Later-born cohorts (1914-1948)
Earlier-born cohorts (1883-1913)

Note. Models include age at assessment, age at death, gender, education, and circulatory diseases.

Cohort Differences in Cognitive Dying:
 Little evidence for positive cohort differences

Note. Models include age at assessment, age at death, gender, education, and circulatory diseases.

Summary

Do earlier-born (1883-1913) and later-born cohorts (1914-1948) differ in ...
... age-related cognitive change between ages 50 and $\mathbf{8 0}$?

- except for Number, results consistent across abilities
- at age 70, higher levels for later-born cohorts (0.5+SD)
- shallower age declines for later-born cohorts (--> differences get magnified)
- net of education, circulatory diseases, and gender
... mortality-related cognitive change in the last years of life?
- except for Verbal, no evidence for positive cohort differences net of age, education, circulatory diseases, and gender
- steeper mortality declines for later-born cohorts (--> differences get diminished)

Cohort Differences in Cognitive Aging and Dying

Cognitive aging

\square Sizeable effects across 30 years of life during which age declines are expected; cohort may act as a proxy for moderators (e.g., slows the rate of cognitive aging)
\square Discrepant pattern on Number (Schaie, 1994):
those born earlier trained arithmetic abilities more during (elementary) school

Cognitive dying

\square Pervasive processes leading to death counteract previous cohort differences; verbal ability as the strongest positive secular effect not washed out
\square Secular trends do NOT generalize to a vulnerable segment of society; compression vs. expansion of morbidity?Effects of mortality selection?

Cohort Differences in Cognitive Aging and Dying

Some caveats
\square Sample drawn from an HMO may not be (equally) representative of the cohorts
\square Statistical power differences between age and mortality models (7-year intervals)
\square Defining cohort: time-based (broad - specific) vs. event-based
\square Disregard within-cohort heterogeneity and changes therein

Open Questions

\square Implications for processes of aging and dying among Baby Boomers?
\square Other abilities (e.g., memory) or purer fluid measures (e.g., brain efficiency)?
\square Do findings generalize to advanced ages (age 80+)?
\square Covariates: Quantifying effects? Further factors (e.g., technology, occupation)?
\square Cohort differences in multivariate profiles of functioning and change?

