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This study examined the hypothesis that psychometric tests retain equivalent factor structures across
samples widely differing in age. We estimated a best-fitting measurement model for 17 psychometric
tests covering the 5 primary abilities of Inductive Reasoning, Spatial Orientation, Verbal Ability,
Numerical Ability, and Perceptual Speed, using a sample of 1,621 participants (ages 22 to 95) from
the 5th wave of the Seattle Longitudinal Study. We disaggregated the participants into 9 subsets (A
ages = 29, 39, 46, 53, 60, 67, 74, 81, and 90) and tested the fit of the accepted model for each

subset. We confirmed configural invariance for all subsets, but could not establish either complete or

incomplete metric invariance for any set. These results confirm the stability of factor patierns across
age but indicate serious limitations for valid cross-age comparisons of individual markers of psycho-

metric abilities in age-comparative studies.

Much of the literature on cognitive aging is concerned with
comparing levels of performance of groups of individuals vary-
ing (often widely) in chronological age. The theoretical issues
and evidence for the assumption of the internal validity of em-
pirical studies, whether cross-sectional or longitudinal, that
offer such comparisons have been discussed in considerable de-
tail (Nesselroade & Labouvie, 1985; Schaie, 1973, 1977,
1988a). Another major assumption that has received only lim-
ited attention so far, however, has been the question of whether
the factorial structure of assessment instruments remains
equivalent both within subjects across time and between groups
of subjects of different ages assessed at the same point in time
(cf. Schaie & Hertzog, 1985). If satisfactory evidence of factorial
invariance were lacking, it would be possible that the validity
of quantitative comparisons might be impaired because of the
occurrence of qualitative age changes or age differences among
groups.

A critical assumption that underlies evaluation of quantita-
tive change across age or differences between different age
groups is that the relationship between the ability constructs
and measures of these constructs (psychometric tests) in the as-
sessment battery remains invariant across comparisons. That
is, quantitative comparisons are meaningful only if there is
qualitative invariance (cf. Baltes & Nessciroade, 1973).

The question arises, then, as to how such qualitative differ-
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ences in factor structure would be manifested. The comparative
factor analysis literature suggests that the required evidencv for
factorial invariance would be the demonstration of the equality
of unstandardized factor pattern weights (factor loadings; see
Hertzog & Schaie, 1986; Meredith, 1964; Schaie & Hertzog,
1985). Horn, McArdie, and Mason (1983) have recently fo-
cused attention on the distinction between two levels of invari-
ance in factor loadings (with different implications for age
change and age differences research) first introduced by Thur-
stone (1947, pp. 360-369): configural invariance and metric in-
variance.

Configural invariance requires that measures marking fac-
tors have their primary loading on the same ability constructs
across occasions. If configural invariance is not maintained
across time or between different cobort groupings, then it is
likely that developmental processes or cohort effects may have
produced qualitative changes in ability structure. If this were
the case, interpretation of quantitative age changes or age
differences wouid then be ambiguous. .

Metric invariance requires not only that markers have their
primary loading on the same ability construct, but also that the
magnitude of the loadings can be constrained equally across
time or between groups. It seems reasonable to hypothesize,
even if configural invariance can be confirmed, that develop-
mental processes or differential cohort experiences could cause
changes or differences in the magnitude of the factor loadings
for the ability measures. That is, it may not be possible to obtain -
complete metric invariance due to shifts or differences in the
magnitude of the factor loadings for Tests A and B, even though
the tests mark the same ability factor across time or for different

cohorts. Finding a lack of metric invariance would raise prob-

lems for the interpretation of quantitative changes or differences
in individual tests. Such problems could readily be sur-
mounted, however, where quantitative change can be assessed
at the level of factor scores rather than observed scores (cf. Hert-
zog & Schaie, 1988).
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The issue of factorial invariance in longitudinal studies of in-
telligence has thus far been dealt with only for-the relation of
the first five primary mental abilities to a second-order g factor
(Hertzog & Schaie, 1986). This study found highly stable indi-
vidual differences in the projection of the primaries on the sec-
ond-order factor over 14-year intervals in three samples that
had mean ages.of 37, 49, and 65, respectively, at the inception
of these studies.'

Considerably more data exist on factorial invariance across
adulthood from cross-sectional studies. The first major analyses
of this kind were conducted by Cohen for the standardization
samples of the Wechsler Adult Intelligence Scale (1957). Cohen
concluded that what we would now call configural invariance
was maintained from young adulthood to old age, but that fac-
tor loadings shifted substantially. Cunningham (1980, 1981)
studied measures of speed and verbal ability from the ETS Kit
of factor-referenced measures (Ekstrom, French, Harman, &
Derman, 1976). He concluded for these studies that the factor
space was maintained, with highly similar factor loadings, but
that factor covariances tended to increase with age. Similar
findings were obtained by Stricker and Rock (1987) in a study
of the GRE that compared factor structures for the first three
adult decades. However, in a more recent study of a battery in-
volving speeded cognitive factors comparing two samples (one
young adult and one young-old), White and Cunningham
(1987) had to reject all simultaneous models and concluded that
an additional factor was required to fit the data for their older
group.

The present study addresses the issue of structural invariance
across different age groups in a cross-sectional data set. It is
more comprehensive then previous efforts, however, because it
surveys a broader range of measures within the primary mental
ability space and systematically covers nine age intervals across
the adult life span from a mean age of 29 to a mean age of 90
years,

Data reported in this study are on participants in the Seattle
Longitudinal Study (SLS), who were assessed on multiple mea-
sures of five primary mental abilities: Inductive Reasoning,
Spatial Orientation, Perceptual Speed, Numerical Ability, and
Verbal Ability. In this article, we report the application of re-
stricted (confirmatory) factor analysis to assess the hypothesis
of factorial invariance across different age/cohort groups as-
sessed at the same pointin time. These analyses have been con-
ducted, using the LISREL approach outlined by Joreskog (1979;
also see Schaie & Hertzog, 1985). As discussed by Schaie and
Hertzog (1985; see also Hertzog & Schaie, 1986), the critical
test of differences in the measurement properties of separate
data sets involves the test of invariance across age in the (un-
standardized) regressions of variables on factors (i.e., the metric
invariance in factor pattern loadi ngs). With respect to changes
in factor structure, we test hypotheses at three levels of strin-
gency: (a) complete metric invariance, which implies that there
would be no difference between the best-fitting model for the
total sample and each subset in the factor pattern loadings (re-
gression coefficients relating tests to ability factors) and factor
intercorrelations; (b) incomplete metric invariance, which im-
plies no differences between the best-fitting model for the total
sample and each subset in factor loading patterns, but allows
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for differences in the factor intercorrelations; and (c) configural
invariance, which requires maintenance of factor patterns but
allows for differences in factor loadings and factor intercorre-
lations.

Method

Subjects

Our sample consisted of 1,621 participants (738 men and 883
women), from the Seattle metropolitan area, who participated in the
fifth wave (1984) of the Seattle Longitudinal Study (SLS; Schaie, 1983,
1988b; Schaie & Hertzog, 1986). The SLS includes subjects initially
tested at five measurement points (1956, 1963, 1970, 1977, and 1984).
Only data from the fifth wave are used in the present study because this
was the first occasion for which multiple markers are available for the
primary abilities of interest. Initially, all subjects represented random
draws from the base population. That is, subjects are, or have previously
been, members of the Group Health Cooperative of Puget Sound, a
health maintenance organization. Possible effects of practice and attri-
tion for those subjects who were repeatedly tested have been reported
clsewhere (Schaie, 1988a); the effects of selection biases are relatively
limited and would not seem to be important for purposes of structural
analyses.

Identical recruitment procedures have been used in all samples:
definition of a sampling frame by random draws from the health main-
tenance organization, followed by mail solicitation (see Schaie, 1583,
for additional details on recruitment procedures in the SLS). Mean age
of the total sample was 59 years (range = 22-95; SD = 16.03). Mcan
educational level was 14.3 years (range = 1-20; §D = 3.06). There were
no sex differences in age or educational level. Mean family income level
was $23,200 (range = $1,000-$50,000 and over; SD = $9,606). All sub-
jects were community dwelling, and most were Caucasian. Occupa-
tional levels were rated on a scale from 0 for unskilled to 9 for profes-
sional occupations. Those individuals who were gainfully employed at
the time of assessment averaged an occupational level of 6.8 (SD =
1.87). The most frequent occupations represented involve skilled trades
and clerical, sales, managerial, and semiprofessional jobs. All subjects
were in good health at the time of testing; their records were prescreened
by their attending physicians. Those potential participants who were
acutely ill or had disabilities that would prevent them from participating
in pencil-and-paper format assessment were eliminated. For the
purposes of this study, the sample was disaggregated into nine subsets
by date of birth (see Table 1). '

Measures

The test battery included psychometric measures representing five
primary mental abilities. The battery included the Thurstone Primary
Mental Ability measures (Thurstone, 1948) administered at. previous
SLS assessments. Additional measures were selected from other sources

' The issue of construct equivalence of factor structure has also at-
tained importance in the context of cognitive training research (cf, Wil-

- lis, 1987). A short-term repeated measurement study of five ability fac-

tors by Schaie, Willis, Hertzog, and Schulenberg (1987) showed stability
of factor structure in a sample of subjects ranging in age from 62 to 94
years over an interval of several weeks in control and training groups.
Although there were sex differences in level, this study also showed that
there were no significant sex differences in factor structure, That study
provides the initial measurement model for the analyses presented in
this article.
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Spatial orientation. Three of these tests (PMA Space, Object Rota.
non. Alphanumeric Rotation) are multiple response measures of two.

Table 1
Subsamples Entering the Structural Invariance Analvses
M age
Group SLScohort  Year of birth N (in years)
1 1-2 1886-1899 39 90
2 3 1900-1906 136 81
3 4 1907-1913 260 74
4 b 1914-1920 291 67
5 6 1921-1927 260 60
6 7 1928-1934 193 53
7 8 1935-1941 154 46
8 9 1942-1948 124 39
9 10-11 1949-1962 164 29
Total sample 1621 59

Note. Following the convention used in all reports from the Seattle Lon-
gitudinal Study (SLS), lower cohort numbers represent earlier-born
(older) subjects in all wabulations.

(principally the Educational Testing Service Reference Kit; Ekstrom et
al., 1976) or the ADrPT training battery (Baltes & Willis, 1982). Tests
were selected on the basis of empirical evidence (¢.g., Baltes, Cornelius,
Spiro, Nesselroade, & Willis, 1980; Ekstrom et al., 1976) indicating that
these tests would be relatively pure markers of the targeted ability fac-
tors. Each ability was represented by three to four markers (see Table
2). All tests are administered under time limits and are slightly speeded.

Table 2 also reports the test-retest correlations of these indicators in
a group of 172 participants who received these measures twice over a 2-
week interval (Schaie, Willis, Hertzog, & Schulenberg, 1987). Under
the assumption of perfect stability of individual differences in the true
scores, these correlations estimate the reliability of the tests (Schaie &
Hertzog, 1985). To the extent that individual differences are not per-
fectly stable, these correlations actually underestimate the markers' reli-
ability. The correlations are all greater than .8, indicating satisfactory
reliability for all instruments.

| mental-rotation ability. The subject is shown a mode! line
drawmg and asked 10 identify which of six choices shows the mode]
drawn in different spatial orientations. There are two or three correct
responses possibie for each test item. The Object Rotation test (Schaie,
1985) and the Alphanumeric Rotation test (Willis & Schaie, 1983) were
constructed so that the angle of rotation in each answer choice is ideny;.
cal with the angle used in the PMA Spatial Orientation test (Thurstone,
1948). The three tests vary in item content. Stimuli for the PMA test are
abstract figures; the Object Rotation test involves drawings of familiar
objects; and the Alphanumeric test contains letters and numbers. The
Cube Comparison 1est (Ekstrom et al., 1976) requires the matching of
three-dimensional cubes upon mental rotation.

Inductive reasoning. The PMA Reasoning measure (Thurstone,
1948) assesses inductive reasoning ability by means of letter-series prob-
lems. The subject is shown a series of letters and must select the next
letter in the series from five letter choices. The ADEPT Letter Series test
(Blieszner, Willis, & Baltes, 1981) also contains letter-series problems;
however, some of the problems involve pattern description rules other
than those found on the PMA measure, The Word Series test (Schaie,
1985) parallels the PMA measure in that the same pattern description
rule is used for each item; however, the test stimuli are days of the week
or months of the year rather than letters. The Number Series test
(Ekstrom et al., 1976) involves series of numbers rather than letters and
involves different types of patiern description rules involving mathe-
matical computations.

Perceptual speed. All perceptual speed measures come from the ETS
factor reference kit (Ekstrom et al., 1976). Finding As involves the can-
cellation of the letter a in columns of words of which about half contain
that letter. Picture Identification requires the subject to find the match
among five simple test figures 10 a stimulus figure. Number Comparison
involves comparing two sets of eight-digit numbers and marking those
pairs that are not identical.

Numerical ability. The first measure of numerical ability was the
PMA Number test, which involves the checking of simple addition

Table 2
Intellectual Abilities Measurement Battery
Test-retest
Primary ability Test Source correlation
Inductive Reasoning PMA Reasoning Thurstone, 1948 884
ADEPT Letter Series (Form A) Blieszner, Willis, & Baltes,
Word Series 1981 .839
Number Series Schaie, 1985 .852
Ekstrom, French, Harman,
& Derman, 1976 .833
Spatial Orientation PMA Space Thurstone, 1948 817
Object Rotation Schaie, 1985 .861
Alphanumeric Rotation Willis & Schaie, 1983 .820
Cube Comparison Ekstrom et al., 1976 : 951
Perceptual Speed Finding As Ekstrom et al., 1976 814
Number Comparison Ekstrom et al,, 1976 .860
Identical Pictures Ekstrom et al., 1976 865
Numerical Ability PMA Number Thurstone, 1948 .875
Addition Ekstrom et al., 1976 937
Subtraction and Multiplication Ekstrom et al., 1976 943
Verbal Ability PMA Verbal Thurstone, 1948 .890
Vocabulary I1 Ekstrom et al., 1976 .828
Vocabulary 1V Ekstrom et al., 1976 954




STRUCTURAL INVARIANCE OF COGNITIVE ABILITIES 655>

problems (Thurstone, 1948). The Addition test (Ekstrom et al., 1976)
involves calculating the sum of four two-digit numbers. The Subtrac-
tion and Multiplication test (Ekstrom et al., 1976) requires calculating
the sums and products for alternate rows of simple subtraction and mul-
tiplication problems.

Verbal ability. All measures are multiple-choice tests that require
selecting a synonym for a stimulus word from four alternatives. The first
measure is the PMA Verbal Meaning test (Thurstone, 1948). The other
two measures are Levels 2 and 4, respectively, from the ETS factor refer-
ence kit (Ekstrom et al., 1976).

Assessment Procedire

The measures described above were administered to small groups of
subjects as part of a broader test battery that required approximately 5
hr, spread over two sessions. The tests were administered in a standard
format and order by an examiner assisted by a proctor. Testing locations
were at familiar sites, such as clinic conference rooms or church meet-
ing rooms, close to the homes of our participants. A subject fee of $50
was provided on completion of both test sessions.

Statistical Procedure

The evaluation of equivalence in the factor structure of the psycho-
metric battery in the different age/cohort groups was conducted by us-
ing LISREL VI (Joreskog & Sorbom, 1984) to perform confirmatory fac-
tor analysis (see Alwin, 1988; Joreskog, 1971; Joreskog & Sorbom,
1977, and Schaie & Hertzog, 1985, for further discussions of the tech-
nique). The analyses reported in this paper used only one of LISREL'S
two factor analysis measurement models. In LISREL notation, the mea-
surement model may be specified as

y=An+e, (1

which in matrix form yields a p order vector of observed variables, 3, as

a function of their regression on m latent variables (factors) in 5, with’

regression residuals ¢. The p X m matrix A contains the regression co-
efficients (factor loadings). The covariance matrix of the observed vari-
ables in the population, =, may then be expressed as

T=ABN+O, @

where A is as before, & is the covariance matrix of the 5, and O is the
covariance matrix of the es. Equation 2 represents a restricted factor
analysis model that can then be generalized to a multiple group model
(Joreskog & Sorbom, 1984).

The parameters of LISREL's restricted factor analysis model are esti-
mated by the method of maximum likelihood, provided that a unique
solution to the parameters has been defined by placing a sufficient num-
ber of restrictions on Equation 2 to identify the remaining unknowns.
Restrictions are specified by fixing parameters to a known value a priori
(e.g.. requiring that a variable is unrclated to a factor by fixing its regres-
sion to 0).

Overidentified models (which have more restrictions than are neces-
sary to identify the model parameters) place restrictions on the hypothe-
sized form of I, which can be used to test the goodness of fit of the
model to the data using the likelihood chi-square test statistic. Differ-
ences in chi-square between “nested” models (models that have the
same specification. with additional restrictions in one model) cun be
used 1o test the null hypothesis that the restrictions are true in the popu-
lation. A more restrictive model (i.e., with more restrictions placed on
the model parameters) that is nested within a less restrictive model will
be accepted over the less restrictive model if the difference in chi-square
between the two models is not significant. Conversely, if the difference in
chi-square is significant, then the less restrictive model will be accepted.

An additional index of model fit used in this study is the LISREL
goodness-of-fit (relative fit) index (GF1; Joreskog & Sorbom, 1984).
This index would be 1.0 if a perfect fit of the model to the data were
obtained. The advantage of such relative fit indices is that they may be
less influenced by sample size than the chi-square fit statistic (e.g., Bent-
ler & Bonett, 1980, but see Anderson & Gerbing, 1984; Bollen, 1986).
Factor models with fits in the .8 to .9 range (such as those reported
below) are generally considered to be useful approximations of the un-
derlying ““true” model. even though they do not account for all bivariate
covariances in the data, provided that alternative specifications have
been evaluated and ruled out. For our purposes, we will consider a GFI
of .8 as an acceptable fit and a GFI in excess of .9 as an excellent fit. In
initial model development, diagnostic fit indices such as LISREL modifi-
cation indices and residual correlations were also carefully evaluated
before proceeding to the analysis of group differences in factor struc-
ture.

Results

We conducted three distinct sets of confirmatory factor anal-
yses to assess complete metric, incomplete metric, and config-
ural invariance for each of the nine cohort groups. The initial
structural model for these analyses was based on the factor
structure derived in a prior analysis (Schaie et al., 1987) for a
sample of 401 participants ranging in age from 62 to 94 years
(M age = 72.1 years). The previous analysis confirmed a struc-
ture consisting of the following five factors: Inductive Reason-
ing, Spatial Orientation, Perceptual Speed, Numerical Ability,
and Verbal Ability.

Estimation of the Measurement Model

Although it seemed reasonable to allow the results of the
prior study of older people to provide the initial hypothesis for
the factor pattern model, we felt that it was more desirable to
conduct the tests of factorial invariance on the basis of a mea-
surement model that used data collected more evenly across the
entire adult life span. Therefore, the measurement model was
estimated for the total data set (N = 1,621). All raw scores were
rescaled into T-score form, on the basis of the entire SLS popu-
lation at first test. Analyses were conducted on the variance-
covariance matrix, with results rescaled into a correlation met-
ric. The results of this analysis yielded a quite satisfactory fit,
x¥(107, N = 1,621) ='946.62, p < .001 (GFI = .936). Table 3
shows the factor loadings and factor intercorrelations that enter
subsequent analyses. In this model, each ability is marked by at
least three operationally distinct tests. Each test marks only one
ability, except for Number Comparison, which splits between
Perceptual Speed and Number, and PMA Verbal Meaning,
which splits between Perceptual Speed and Verbal Ability.

To examine the adequacy of the measurement model further,
we tested a less restricted model. In this model, a marker vari-
able was fixed 1o 1.0 for its salient factor loading and zero for
each of the five factors, but all other values (lambda) were freely
estimated. As would be expected. this relaxed model produced
a significantly better fit, x*(6. N = 1621) = 229.63, p < .001
(GF1 = .983), by exhausting a larger proportion of common
variance through allowing secondary loadings for all marker
variables. However, the most salient loadings remained consis-
tent with the hypothesis matrix for the more restricted model.
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Table 3
Measurement Model for Total Data Set
Factor
Unique
Variable 1 Sp Ps N A" . variance
PMA Reasoning .895* 199
ADEPT Letter Series 884 219
Word Series .891* .207
Number Series .787* .381
PMA Space .831* .309
Object Rotation 877* 231
Alphanumeric 831 .309
Cube Comparison 594+ 647
Finding As 524+ 725
Number Comparison 576* .270* 424
Identical Pictures 832+ 308
PMA Number .838* 297 .
Addition 938+ 121
Subtraction and Multiplication .865* 252
PMA Verbal Meaning 660* .386* 254
Vocabulary I .897* .195
Vocabulary 1V .893* .203
Intercorrelations
1 —_
Sp .768 —
Ps .856 765 —
N - .562 416 555 —_
\% 484 .260 317 353 —_—

Note. ] = Inductive Reasoning; Sp = Spatial Orientation; Ps = Perceptual Speed; N = Numeric; V = Verbal.
x2(107, N = 1621) = 946.62. Goodness-of-Fit Index = .936.

*p<.001.

In the interest of examining age differences for a factor structure
that is as parsimonious and conceptually simple as possible, we
decided to proceed with the original, more restricted measure-
went model.

Complete Metric Invariance

In the first set of analyses, we tested the covariance matrices
for each of the nine subsets to determine their fit to the mea-
surement mode] determined for the entire sample (Table 3). For
these analyses, the factor loading pattern was specified to be
identical with that of the measurement model for the entire
sample. The values of the factor loading matrix (lambda) and
the factor variance-covariance matrix (phi) were fixed to those
estimated in establishing the measurement model for the total
data set. The values of the unique variance matrix (theta delta)
remained free and were estimated. (The factor loadings and fac-
tor intercorrelations for these nine analyses are, of course, iden-
tical with those in Table 3 and have not been presented sepa-
rately.) The chi-square statistics and the GFIs are presented in
Table 4. Of course, these model fits are somewhat lower than for
the total set but, except for Cohort 1-2 and Cohort 3 (the oldest
cohorts), are still quite acceptable. Cohort 1-2 had the lowest
GFI (.596), and Cohort 5 had the highest (.893). The small
sample size of Cohort 1-2 (n = 39) probably accounts for its
poorer fit.

Incomplete Metric Invariance

In the second set of analyses, we assessed the less stringent
hypothesis of incomplete metric invariance for the nine cohort
groups. For these analyses, the factor loading pattern remained
the same and was set to that of the measurement model. The
values of the factor loading matrix (lambda) remained fixed at
those estimated for the total group. However, the values of the
factor variance-covariance matrix (phi) and the unique vari-
ance matrix (theta deita) were allowed to be free and were esti-
mated. (The factor loadings are identical with those in Table 3.)
The factor variances and standardized covariances for the nine
cohorts are presented in Table 5, and the chi-square statistics
and GFls are given in Table 4. The GFlIs for this moderately
constrained model yielded an improvement over those for the
more constrained model (complete metric invariance). Similar
to the complete metric invariance model, the poorest fit was
again found for Cohort 1-2 (.669), and the best fit was found
for Cohort 4 (.913). Substantial differences in factor variances
are found across cohorts. Variances increase systematically un-
til the sixties and, then, decrease again. Covariances also show
substantial increment across cohorts with increasing age.

Configural Invariance .

For the third set of analyses, the factor loading pattern was
set to that of the previously determined model. However, the
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Table 4
Chi-Square Values and Goodness-of-Fit (GFI) Indices for the Three Models
Incomplete Complete
Configural metric metric
Cohort x? GF1 x3? GF1 x? GF1 n
i-2 161.59 697 186.72 664 247.15 .596 39
3 176.78 .869 269.07 811 385.98 .789 136
4 169.36 930 240.09 904 347.71 882 260
5 209.69 925 242.39 913 321.98 .893 291
6 215.12 912 268.07 .889 361.60 .868 260
7 183.64 907 225.85 .884 328.09 .856 193
8 133.17 911 170.46 .888 260.03 .853 154
9 184.33 848 . 216.64 .824 279.96 .801 124
10-11 271.86 .836 308.16 .823 448.89 .780 164
df 107 121 136 -

values of the factor loading matrix (lambda), the factor vari-
ance~covariance matrix (phi), and the unique variance matrix
(theta delta) were all allowed to be free and were estimated. We
conducted analyses on the covariance matrices for each subset,
with a metric being established by setting the largest loading on
each factor to 1.0. Results were then standardized into a corre-

Jation metric to be comparable with the other analyses. Sum-
maries of the factor loadings, factor variances, and standardized
covariances across cohorts are presented in Tables 6 and 7, re-
spectively. All chi-square statistics for these analyses were sig-
nificant, and the goodness-of-fit indices ranged from a low of
.697, for the oldest cohort, to a high of .930, for Cohort 4 (see

Table 5
Incomplete Metric Invariance Model Factor Variances and Standardized Covariances by Cohort Group
Cohort
Factor 1-2 3 4 5 6 7 8 9 10-11
Factor variances
Inductive Reasoning 10.44 16.04 22.17 27.23 25.26 - 21.287 - 17.59 16.02 18.06
Spatial Orientation 53.56 76.14 109.06 116.93 105.51 90.52 83.09 99.21 47.86
Perceptual Speed. 24.06 32.56 26.86 27.68 20.42 15.23 16.52 12.93 13.38
Numerical Ability 140.02 235.32 194.56 264.62 249.69 246.27 263.96 188.24 164.00
Verbal Ability 58.28 53.10 37.80 33.14 31.43 29.04 2293 2491 18.61
Standardized covariances
Inductive Reasoning with B
Spatial Orientation 768 .696 543 631 .590 .542 600 .503 .599
Perceptual Speed 744 726 671 767 758 .644 824 697 .702
Numerical Ability 614 667 597 625 .501 482 587 450 516
Verbal Ability .680 .626 705 .638 .626 512 313 415 597
Spatial Orientation with
Perceptual Speed 486 725 614 .590 .605 416 466 443 .398
Numerical Ability 471 637 .360 .348 364 214 323 .140 265
Verbal Ability 502 434 .306 330 226 229 .085 027 423
Perceptual Speed with ) B
Numerical Ability .802 792 610 T .647 524 461 720 535 ..405
Verbal Ability 366 449 437 .390 402 418 357 246 559
Numerical Ability with
Verbal Ability 636 537 450 410 .262 172 146 216 285
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Table 6
Factor Loadings for the Configural Invariance Model
Variable Variable
PMA ADEPT Letter Word Number ' Number Identical  PMA Verbal
Cohort Reasoning Series Series Series Cohort Finding As Comparison Pictures Meaning
Inductive Reasoning Perceptual Speed (cont.) -
1-2 .808* 618* .865* .607* 7 457" 477" 521* .398*
3 .805* .770* .908* 646* 8 .600* 373 .641* 325
4 872+ 834" .854* .746* 9 503+ 474+ 620" 2120
5 .889* .844* .840* 752+ 10-11 443* 453* 355+ .368*
6 .896* 861* 811* 759+
7 .880* .826° 819+ .698* .
8 802° 747 770 641* Variable
9 .768* .807* .732% .610* .
Number PMA Subtraction/
10-11 -126* $895° B46* -123° Cohort  Comparison  Number  Addition  Multiplieation
Variable Numerical Ability
PMA Object Alphanumeric Cube 1-2 225 .690* .808* 832"
Cohort Space Rotation Rotation Comparison 3 -.056 .840* .936* 877*
— . 4 .299* 833* .894% 884+
Spatial Orientation ] .250% 870* 947 .897*
6 254* .840* 951* .836*
’;2 g;ﬂ: ;g: 'ggg: i 7 182 840° 950* 8320
3 '785‘ ‘893 '802* 435* 8 277 .820* 968* .820*
: : ;e ‘encE 9 .302* 827+ 962* .784*
5 .850* .835* 770 525 - - -
: "B68* ‘516* 286" oTre 10-11 .128 742 957 816
7 823+ .788* .708* 474*
8 .740* 879* .779* 498* Variable
9 .780* .852* .700* .519*
10-11 674* 682" .632* .652* PMA Verbal
Cohort Meaning Vocabulary II Vocabulary IV
Variable
Verbal Ability
Number Identical  PMA Verbal
. . : : 1-2 123 904> .983*
Cohort Finding As Comparison Pictures Meaning 3 ‘327e 936% "942%
4 .300* .831* 919*
Perceptual Speed 5 4s7e 912¢ 870*
1-2 559* .549 .700* .807* 6 528+ .890* .882*
3 650* .890* .780* .681* 7 .640* .878* .926*
4 549* .530* .700* .687* 8 A491¢ .908* .873*
5 572* 547+ .702* 527 9 592+ .896* .873*
6 526* 447 576% 475* 10-11 .458* 842 .890*
*p<.05.

Table 4). Substantial differences were again found across co-
horts for factor variances and covariances, with patterns similar
to those shown in the incomplete metric invariance analysis.

Change in Chi-Squar.e

To determine which model (configural, complete metric, or in-
complete metric invariance) fit the data best, we assessed changes
in chi-square statistics. The results of these analyses are presented

in Table 8. As indicated in this table, there were no cohort groups .

for which the most constrained model (complete metric invari-
ance) or the less constrained model (incomplete metric invariance)
provided the best fit. The configural invariance model provided

a significantly better fit than the more constrained models in all
instances and must, therefore, be accepted as the most plausible

_description of the structure for our data set.

Differences in Factor Loadings

What is the nature of the cohort differences in factor loadings
for the accepted configural invariance model? These differences
appear to be ability-specific and located with respect to individ-
ual marker variables, rather than systematically related to over-
all differences across cohorts. We observed what seem to be only
random sampling variations across cohorts for the Inductive
Reasoning factor. For Spatial Orientation, however, Cube Com-
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Table 7
Factor Variances and Standardized Covariances by Cohort Group for Configural Invariance Model
Cohort
Factor 1-2 3 4 s 6 7 8 9 10-11
Factor variances
Inductive Reasoning 10.69 14.15 21.15 26.47 26.19 15.38 18.55 14.08 15.88
Spatial Orientation 62.28 131.95 129.21 113.19 93.31 80.66 95.32 102.78 43.62
Perceptual Speed 15.92 27.22 17.56 20.14 13.04 10.08 15.57 15.53 5.20
Numerical Ability 154.58 221.19 184.87 276.68 223.19 208.71 235.62 155.23 163.84
Verbal Ability 60.27 51.75 40.94 31.86 3246 31.59 26.13 27.48 19.55
Standardized covarianfes
Inductive Reasoning with =
Spatial Orientation .760 .673 527 628 .589 .539 598 Sl 644
Perceptual Speed 852 773 727 .784 .762 .632 172 .636 744
Numerical Ability 664 .676 .594 .625 494 430 579 412 515
Verbal Ability .658 646 .683 636 628 Si4 324 446 .601
Spatial Orientation with
Perceptual Speed 530 699 .605 575 577 400 497 467 341
Numerical Ability 465 .607 343 345 .356 213 321 139 257
Verbal Ability 482 416 279 331 234 245 .072 025 399
Perceptual Speed with
Numerical Ability .873 .850 .650 681 .548 530 683 517 545
Verbal Ability 549 543 496 .384 422 298 297 236 .542
Numerical Ability with
Verbal Ability 627 S17 426 404 264 166 136 213 273

parison ceases to be a significant marker for the two oldest co-

hort groups. For Perceptual Speed, Finding As and Number -

Comparison show primarily random sampling variation across

cohorts, but the loadings for Identical Pictures and Verbal

Meaning appear to increase systematically for the older cohorts.
On Numerical Ability, random sampling variability occurs for
the primary markers, whereas the secondary marker of Number
Comparison does not attain significance for four of the nine
cohort groups. Finally, for Verbal Ability, the PMA Verbal
Meaning test drops out as a significant loading for the oldest
cohort and has substantially lower loadings for the two next old-
est cohorts.

Discussion

As noted earlier, the validity of any age-comparative study of
intelligence is directly based on the assumption that the mea-
surement operations used in the study are comparable across
age groups. That is, each observation is assumed to measure the

same latent construct equally well, regardless of the age of the
experimental subjects. Three levels of stringency of measure- -

ment equivalence were defined: complete metric invariance, in-
complete metric invariance, and configural invariance. Dem-
onstration of the most stringent requirement, complete metric
invariance, would mean that measurement operations not only
remain relevant to the same latent construct, but also that the

correlations of the observable measures with the latent con-
struct remain invariant across age and that the relationships
‘among differeiit constructs in a domain (factor intercorre-
lations) also remain invariant. In the most simple terms, such
a demonstration would imply that inferences can validly be
drawn from the results of an age-comparative study, both for
age ccmparisons of directly observed means and of derived fac-
tor score means for the latent abilities being measured.

Next, we define a somewhat less stringent equivalence re-
quirement, incomplete metric invariance, by allowing the
unique variances and factor intercorrelations to vary across age
groups but requiring the factor loadings to remain invariant. If
our data permit acceptance of this relaxed requirement, we can
still claim that our observations remain relevant to the same
underlying latent constructs and that the relationship of the ob-
servations to these constructs remains invariant across age.
However, the factor space (i.e., the factor variances and covari-
ances among factors) cannot be claimed to remain invariant.
In this case, it would still be permissible to draw inferences on
comparisons of observed scores. Comparisons of factor scores,
however, would be valid only if the changes in the fuctor space
had been adequately modeled in the computational algorithm
for such scores.

In the case of the least stringent requirement, configural in-
variance, we require that observables are relevant to the same



660 " SCHAIE, WILLIS, JAY, AND CHIPUER

Table 8
Differences in Chi-Square Statistics Among the Three Models
Mode!
Complete- Incompiete~ Complete~
Cohort incomplete® configural® configural®
1-2 60.43** 25.13 85.56**
3 116.91** 92.29%* 209.20**
4 107.62** 70.73°* 178.35%*
5 79.59** 32.70* 112.29**
6 93.53** 52.95** 146.48**
7 102.24*+ 42.21** 144.45**
8 89.57% 37.29% 126.86°*
9 63.32** 32.31* 95.63**
10-11 140.73** 36.30* 177.03**
df 15 14 29

* Difference between the complete metric invariance model and the in-
complete metric invariance model. ® Difference between the incom-
plete metric invariance model and the configural invariance
model. € Difference between the complete metric invariance model
and the configural invariance model.

*p<.0l. **p<.00l.

latent construct across age. We do not insist, however, that the
relationships among the latent constructs retain the same mag-
nitudes, nor do we require that the correlations between observ-
ables and their underlying constructs remain invariant. Hence,
a demonstration of configural invariance still allows the claim
that the observable measures are relevant to the same con-
structs across age. However, it cannot be claimed, in this in-
stance, that the observables measure the construct equally well
at different ages.

In this study, we tested each of these requirements within the
domain of psychometric intelligence, as sampled by multiple
markers of the latent constructs of Inductive Reasoning, Spatial
Orientation, Perceptual Speed, Numerical Ability, and Verbal
Ability. We readily admit that this set of constructs is not a com-
plete sampling of the domain of psychometric intelligence. Nor
do we claim that each of the abilities samples has been as
broadly marked as some might like. Our battery was con-
structed for the purposes of a substantive longitudinal study of
adult development (Schaie, 1983, 1988b). Therefore, to obtain
greatest possible construct stability across age and time, the
conventional wisdom argued for marking constructs as nar-
rowly as possible, without simply constructing parallel forms
for each of the original tests. It would obviously have been possi-
ble 1o test alternative theoretical models, such as one derived
from Horn's (1986) theory of fluid (Gf) and crystallized (Gc)
intelligence. However, our past work, to which these analyses
are closely linked, has been conducted within the primary men-
tal abilities framework rather than in reference to second-order
constructs such as the Gf~Gc model. Moreover, our prior work
with this battery clearly suggests that a two-factor model does
not sufficiently account for the common variance (Schaie et al.,
1987), as was the case in the analysis of a similar battery by
others (Baltes et al., 1980).

Although some might argue that our selection of measures

has loaded the dice in favor of demonstrating construct €quiva.
lence across age and time, the results reported here do seem to
lay a strong foundation for the validity of age-comparative styd.
ies with respect to the least stringent equivalence requirement,
That is, if behavior is assessed across age with measures of satis-
factory psychometric characteristics, it is most likely that such
measures will indeed retain their conceptual position within the
domain measured. Moreover, depending on the breadth or nar.
rowness of the domain studied, the same number of factors may
suffice 10 describe that domain (but see White and Cunning.
ham, 1987, for possibly contradictory evidence as to number of
factors).

We also recognize that this demonstration of stability of fac-
tor patterns may be ascribed in part to the nature of our subject
population, which is somewhat skewed toward the upper end of
the socioeconomic scale, both in level of education and intellj-
gence. Thus, it might be argued that our results may be relevant
primarily to those adults who lead somewhat cognitively chal-
lenging lives that may influence the s1ability of cognitive struc-
tures across cohorts (cf. Kohn & Schooler, 1973). Nevertheless,
we must maintain that our sample represents at least as broad,
and probably a broader, demographic spread than any other
study of adults currently reported in the relevant research liter-
ature. These results, therefore, would seem 1o apply directly to
most studies of adult cognitive functioning that use volunteer
samples.

The demonstration of configural (factor pattern) invariance
is initially reassuring to developmentalists in that it confirms
our hope that it is realistic to track the same basic construct
across age and cohorts in adulthood. Nevertheless, our study
gives rise to serious cautions with respect to the adequacy of the
construct equivalence of age-comparative studies. Indeed, here
the relative narrowness of our battery causes us to be even more
concerned as to what one would expect in less tightly con-
structed assessment programs. The second major finding of this
study lies in the demonstration that neither complete nor in-
complete metric invariance could be demonstrated with respect
1o a population-based measurement model for any age/cohort
level. That is, given the conservative nature of our test, we must
conclude that age-comparative studies at the single observable
level are unlikely to provide completely equivalent estimates of
latent constructs across age.

How serious is the divergence from complete metric equiva-
lence? In part, shifts in the interrelation among ability con-
structs involve the increasing convergence of the ability factor
space that has previously been associated with a differentiation—
dedifferentiation hypothesis (Reinert, 1970). As this hypothesis
predicts, factor covariances are lowest for our younger cohorts -
and increase with advancing age. There is also an increase in
factor variances, at least until the seventies, when dispropor-
tionate drop-out of those at greatest risk once again increases
sample homogeneity and reduces factor variances. Because our
data set for the test of complete metric invariance was centered
age-wise on late midlife, it is not surprising that the discrepan-
cies in factor covariances when factor loadings are either con-
strained (Table 5) or unconstrained (Table 7) are confined pri-
marily to the extremes of the age range studied. These shifts,
consequently, would not seriously impair the validity of age-
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comparisons using factor scores, except where extreme age
ranges are involved. )

Because we accept the configural invariance model as the
most plausible description for the structure of our data set, we
must also be concerned with shifts in the correlations of observ-
able measures with the latent constructs. What is at issue here
is that a particular observable measure may be a more or less
efficient measure of a construct at one age than is true at other
age levels. This shift could occur because of the influence of
some extreme outliers in small samples (a possibility that we
ruled out in this study by means of scatter plots for those co-
horts showing deviations in factor loadings) or, more likely, by
the attainment of floor effects in the older cohorts or ceiling
effects in the younger cohorts for some variables. For example,
with increasing age, the Cube Comparison test becomes a less
effective marker of Spatial Orientation, whereas the PMA Space
measure becomes a stronger marker. Similarly, the Number
Comparison test (a marker of Perceptual Speed), which has a
secondary loading on Numerical Ability in the general factor
model, loses that secondary loading with increasing age. These
findings suggest that age comparisons in performance level on
some single markers of an ability may be confounded by the
changing efficiency of that marker in making the desired assess-
ment. Fortunately, in our case, the divergencies are typically
quite local in nature. That is, for a particular ability, the optimal
regression weights of observable measures on their factors may
shift slightly, but there is no shift in the primary loading to an-
other factor, and the structural relationships are well main-
tained across the entire age range sampled.

In sum, our results suggest that many markers of psychomet-
ric abilities are quite robust with respect to their construct

equivalence across the adult age range. Consequently, our dem- - . -

onstration of invariant factor structures supports the validity
of quantitative comparisons across different age levels provided
that measures are used that have good reliability. However, be-
cause of the finding of age differences in the efficiency with
which latent constructs are measured by individual markers, it
also follows that inquiries of age differences, whenever possible,
should use multiple markers so that inferences as to age differ-
ences can be made at the more stable construct level. Qur find-
ings, of course, are restricted to a limited part of the domain of
psychometric intelligence in which a high degree of stability of
these measures has been demonstrated in many investigations.
It might be suggested, therefore, that the observed discrepancies
from complete metric equivalence across age are likely to be
far more serious in other substantive domains that involve less
reliable measures.
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