

Dementia Status related to Presence of Type II Diabetes, APOE-e4, and Neurocognitive Losses

Andrew J. Revell University of Massachusetts Dartmouth and K. Warner Schaie University of Washington

Presented at 62nd Annual Scientific Meeting of The Gerontological Society of America, Saturday, November 21, 2009

Introduction

- For the 60 and over age group, the estimated prevalence of diagnosed and undiagnosed diabetes in the US is 12.2 Million or 23.1% (NIH, 2007).
- Type II diabetes as a risk factor to cognitive decline has been well-documented (e.g., Hassing et al., 2004; Arvanitakis, Wilson, & Bennett, 2006)
- There is conflicting information on which domains are affected (e.g., Iwata & Munshi, 2009), though new comprehensive investigations such as work by Yeung, Fischer, and Dixon (2009) have found lower performance by those with diabetes on measures of executive functioning and semantic speed.

Objectives

- Utilizing a statistical model of cognitive domain factors (*Revell & Schaie, in preparation*) we wanted to investigate the contribution of diabetes, dementia, and APOE-e4 subgroups
- Past published research from our group (*Revell, Caskie, Willis, & Schaie, 2009*) has found multi-group confirmatory factor analytic models valuable for differentiating healthrelated domains, such as quality of life

SLS Neuropsychological Study

- Objective: Follow participants from the Seattle Longitudinal Study (SLS; *Schaie, 1996, 2005*) over time for the early detection of dementia
- Participation criteria:
 - Must be 60 years of age or older
 - Previous participation in at least one previous SLS wave
- A comprehensive battery was created for this purpose, composed of 17 test measures, including the CERAD battery (*Morris et al., 1989*)

SLS Neuropsychological Battery

Verbal Fluency of Animals (Borkowski et al., 1967)

Word List Memory Recall (Atkinson & Shiffrin, 1971)

Word List Recognition (Mohs et al.,1984)

Constructional Praxis (Rosen et al., 1984)

WMS-R (Wechsler, 1981) Subtests: Logical Memory Immediate and Delayed Recall only

Design, Digit Span,

Digit Symbol

Trail Making Test, A & B (Reitan & Wolfson, 1985)

Fuld Object Memory Evaluation (Fuld, 1977) **Quality of Life** in Alzheimer's Disease Scale (Logsdon, 1997)

McMaster Problem Solving Scale (Epstein et al., 1983)

CES-D (Radloff, 1977)

Services Use; Caregiver Questionnaire

Measuring Risk Factors

- Type II Diabetes
- Dementia Status
- Apolipoprotein ε-4 status

Health Measures

Diabetes Type II Dementia Status

Measure Characteristics

Presence/ Absence

Unimpaired or Impaired

Non-e4, e-4

APOE-e4

Patient Medical Records; Code 250 from ICD-9

Binary grouping created from 4 ratings by Consensus Assessment Team Whole blood processed via DNA Cryopreservation at Northwest Lipid Research Laboratory

Selection Criteria

- Cross-sectional, neuropsychological data, complete at Time 1
- Presence of APOE-e4 genotyping
- Rating of Dementia Status
- Medical Record information on presence/absence of Type 2 Diabetes
 - Presence=physician's report of ICD-9 Code 250

Sample Characteristics

Variable	Mean	SD	
Age	73.21	7.92	
Education	15.18	2.79	
Gender (n)	207 Males	243 Females	
Dementia Status	336 unimpaired	114 impaired	
Allele Group	334 non-e4	116 e4 group	
Diabetes Group	398 absence	52 presence	

Factors

 Confirmatory three-factor structure for neuropsychological summary and subtest scores:

Procedure

- All measures within our factor analytic model were standardized to the T-score metric (*M*=50, *SD*=10), except where skew >2, whereupon the McCall correction (Garrett, 1966) was employed.
- We regressed dementia rating on our three continuous latent factors (Spatial Orientation, Verbal Reasoning, and Memory Recall), diabetes status, and allele grouping
- All factor analyses were conducted using the *Mplus* statistical package, Version 5.1 (Muthén & Muthén, 1998-2008).

Results

- Full-information, structural equation models indicated that:
 - 1) Cognitively-impaired individuals had significantly lower mean levels of performance on spatial orientation and verbal reasoning factors;
 - 2) Those with impaired dementia status were more likely to have Type II diabetes (p=.035), as well to have one or more APOE-e4 alleles (p=.019)
- Model met criteria for acceptable, though not ideal, fit (CFI=.93; RMSEA=.079), and all indicators were statistically significant at p < .05.

 Next two slides will be altered slightly to include diabetes, dementia, and allele type loadings

Item Loadings by Factor

Factor	Item	Standardized Loading
Memory Recall		
	WMS-R Logical Memory immediate recall	0.696***
	WMS-R Logical Memory delayed recall	0.746***
	Fuld Object Memory Scale, Rapid Retrieval	0.789***
	Word List Memory Recall	0.761***
Verbal Reasoning		
	WAIS-R Vocabulary	0.880***
	WAIS-R Comprehension	0.838***
	Verbal Fluency of Animals	0.243***
Spatial Orientation		
	Trails B	0.783***
	Modified Boston Naming	0.469***
	Constructional Praxis	0.605***
	WAIS-R Block Design	0.719***
	WAIS-R Digit Symbol	0.767***

Latent Factor Correlations

	Memory Recall	Spatial Orientation	Verbal Reasoning
Memory Recall	1.000		
Spatial Orientation	0.736	1.000	
Verbal Reasoning	0.533	0.532	1.000

Discussion

- Other vascular and non-vascular measures should be investigated to provide support across similar cognitive measures from other studies
- It may be that our Spatial Orientation factor is really Executive Functioning, as Trails B has the highest loading of all the measures in this factor, which would support the VLS findings of Yeung, Fischer, and Dixon (2009)
- This investigation may uncover differential patterns of cognitive functioning that aid in identifying additional risk factors for diabetes