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Abstract— The rapid aging of the world’s population is1

causing an increase in the prevalence of cognitive decline2

and degenerative brain disease in the elderly. Current diag-3

noses of amnestic and nonamnestic mild cognitive impair-4

ment, which may represent early stage Alzheimer’s disease5

or related degenerative conditions, are based on clinical6

grounds. The recent emergence of advanced network analy-7

ses of functional magnetic resonance imaging (fMRI) data8

taken at cognitive rest has provided insight that declining9

functional connectivity of the default mode network (DMN)10

may be correlated with neurological disorders, and particu-11

larly prodromal Alzheimer’s disease. The goal of this paper12

is to develop a network analysis technique using fMRI data13

to characterize transition stages from healthy brain aging14

to cognitive decline. Previous studies primarily focused on15

inter-nodal connectivity of the DMN and often assume func-16

tional homogeneity within each DMN region. In this paper,17

we develop a technique that focuses on identifying criti-18

cal intra-nodal DMN connectivity by incorporating sparsity19

into connectivity modeling of the k-cardinality tree (KCT)20

problem. Most biological networks are efficient and formed21

by sparse connections, and the KCT can potentially reveal22

sparse connectivity patterns that are biologically informa-23

tive. The KCT problem is NP-hard, and existing solution24

approaches are mostly heuristic. Mathematical formulations25

of the KCT problem in the literature are not compact and do26

not provide good solution bounds. This paper presents new27
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KCT formulations and a fast heuristic approach to efficiently 28

solve the KCT models for large DMN regions. The results in 29

this paper demonstrate that traditional fMRI group analysis 30

on DMN regions cannot detect any statistically significant 31

connectivity differences between normal aging and cogni- 32

tively impaired subjects in DMN regions, and the proposed 33

KCT approaches are more sensitive than the state-of-the- 34

art regional homogeneity approach in detecting significant 35

differences in both left and right medial temporal regions of 36

the DMN. 37

Index Terms— Network, valid inequalities, fMRI, cognitive 38

decline, biomarkers 39

I. INTRODUCTION 40

DESPITE abundant evidence for cognitive decline as a 41

feature of normal aging, there is wide variability in the 42

extent and progression of these age-related changes [1]. Mild 43

cognitive impairment (MCI) has been defined as an interme- 44

diate stage between normal age-related cognitive changes and 45

dementia [2]. Current diagnosis of MCI is based on the patient 46

or provider having an objective cognitive concern while their 47

overall cognitive function remains intact. This often results in 48

delayed detection and would hamper the dissemination and 49

utility of neuroprotective treatments as they are developed 50

in the future. Thus, there is a pressing need for quantitative 51

neurophysiological methods that can be used to assess brain 52

function before overt cognitive decline occurs. This study 53

presents a step toward the development of a sensitive, non- 54

invasive neuroimaging tool to detect abnormal brain function 55

early, prior to overt cognitive change. We develop a novel 56

network analysis technique to investigate if the strength and 57

structure of brain connectivity within functional regions are 58

altered and associated with cognitive decline. 59

Advances in functional magnetic resonance imaging (fMRI) 60

have allowed researchers to define alterations in large scale 61

neuronal networks that may be associated with abnormal cog- 62

nitive changes. In one popular paradigm, fMRI data is acquired 63

while an individual lies, resting, in the scanner (aka resting 64

state fMRI) and major “intrinsic" brain networks are defined 65

via correlations in low frequency (0.1-0.01 Hz) spontaneous 66

fluctuations in the blood oxygen level-dependent (BOLD) 67

signal. Intrinsic networks identified in resting state fMRI show 68

close correspondence to those found in task-related functional 69
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imaging experiments supporting their functional significance70

during cognition [3]. Default mode network (DMN), which71

includes multiple spatially distinct regions in all lobes of the72

cortex [4], [5], is among the major intrinsic networks defined73

via this method. Alterations of functional connectivity in the74

DMN have been shown to be associated with neurological75

disorders such as dementia [6], schizophrenia [7], autism76

spectrum disorder [8], and depression [9]. However, most77

conventional fMRI studies of the DMN focus on examining78

coarse functional connectivity between spatially distinct DMN79

regions, called inter-regional connectivity, by simply averag-80

ing fMRI signals within DMN regions and measuring correla-81

tion strengths as large-scale connectivity between the regions.82

This approach simply assumes the homogeneity of fMRI83

signals within individual DMN regions and overlooks the84

importance of connectivity between fMRI signals in the same85

region, called intra-regional connectivity. Although there has86

been some evidence of disrupted inter-regional connectivity87

among DMN regions in neurodegenerative diseases, the role88

of intra-regional connectivity that might be associated with the89

diseases is still largely unknown. For instance, alterations in90

inter-regional connectivity structure among the DMN regions91

were found in Alzheimer’s disease (AD); however, intact92

prefrontal and temporal networks were still found in both93

elderly controls and AD patients [10]. Thus investigation of94

intra-regional connectivity is worthwhile and can be comple-95

mentary to the existing inter-regional connectivity studies in96

the literature. The regional homogeneity approach (ReHo) is97

thought to be the current state-of-the-art method in measuring98

similarity of BOLD time series of a given voxel to those of its99

nearest neighbors in a voxel-wise way [11]. However, it does100

not take into account of patterns (e.g., path or hub-and-spoke)101

of intra-regional connectivity.102

Although the DMN regions are commonly defined within103

the entire study subject group (for an “unbiased” comparison),104

the actual functional regions for individual subjects can almost105

certainly vary in size, shape and exact location. This makes106

investigation of intra-regional connectivity with variable DMN107

regions very challenging. For example, Figure 1 illustrates108

the DMN regions defined by group analysis (n=29 subjects)109

and compares the locations, sizes and shapes of DMN regions110

constructed by the group DMN regions on 3 individual sub-111

jects. The figure shows that larger regions (e.g., the right112

dorsal parietal region of the DMN) are highly variable between113

subjects (top row). To address this challenge, we propose a114

network optimization approach to characterize the strength and115

structure of intra-regional connectivity by using a spanning116

tree model. In network optimization, the most commonly used117

spanning tree model is the minimum spanning tree (MST). The118

MST has been used in a study of childhood-onset Schizophre-119

nia [12] to investigate inter-regional functional connectivity120

but has not been used to explore intra-regional connectivity.121

Because the MST makes the unsubstantiated assumption that122

every voxel has to be connected, the MST might not be123

robust enough for intra-regional connectivity analysis as DMN124

regions are not precisely defined and vary in size and location125

across subjects. We propose the k-cardinality tree (KCT)126

model with varying numbers of k voxels to be connected127

Fig. 1. Variability in DMN regions identified by dual regression. Top row
illustrates variability in large regions (pink box - right dorsal parietal) while
the bottom row shows the extreme heterogeneity of smaller regions (pink
box - left posterior hippocampus). Group results from 29 subjects.

within each DMN region to investigate the robustness and 128

stability of intra-regional functional connectivity by taking 129

into account the functional heterogeneity within individual 130

DMN regions. Specifically, the KCT model can identify the 131

connected voxels with varying sizes of the critical component 132

within individual DMN regions, and in turn investigate differ- 133

ent locations and sizes of functional connectivity within DMN 134

regions. In contrast to the standard MST, the KCT is NP-hard 135

and very difficult to solve. Existing KCT formulations in the 136

literature are not scalable and do not provide good solution 137

bounds. We develop new compact mathematical programming 138

models, which provide better linear programming relaxation 139

bound than existing models, and a new algorithm to efficiently 140

solve large-scale KCT models for large DMN regions. Using 141

the proposed KCT approach, we investigate alterations of 142

functional connectivity in the DMN and other cognitive-related 143

networks in a cross-sectional sample of aging individuals with 144

normal aging and abnormal cognitive decline. The outcome of 145

this study might result in a non-invasive technique that could 146

be used as a diagnostic tool that is sensitive enough to detect 147

alterations in functional networks for early detection of MCI. 148

The remainder of the paper is organized as follows. 149

In Section 2, we give a brief background on current MCI 150

and AD studies, fMRI analyses and KCT solution approaches. 151

In Section 3, we provide detailed information on the dataset 152

used in this study, fMRI data pre-processing, and statistical 153

analyses to identify the DMN regions. In Section 4, we 154

present mathematical formulations for the KCT problem and 155

a scalable, fast heuristic method. In Section 5, we present 156

the computational results, analyses of our findings and the 157

outcome from a population-based comparison. We provide 158

conclusions and final remarks in the final section of this paper. 159

II. BACKGROUND 160

A. Resting State fMRI and Default Mode Network (DMN) 161

In resting state fMRI, subjects are asked to rest, calmly 162

and comfortably, in the scanner and data is collected over 163

5-10 minutes. Spatial correlations of low frequency oscilla- 164

tions in the BOLD signal can then be used to map large scale 165
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neural systems in the brain, i.e., functional connectivity [13].166

Resting state fMRI has allowed neuroscientists to discover167

the organization and connectivity of large-scale intrinsic168

connectivity networks (ICNs). Functional interactions within169

and between these ICNs provide unique information about170

systems-level brain function not obtainable through conven-171

tional task-based fMRI and most other neuroimaging methods.172

The DMN is the prototypical ICN. The DMN can be subdi-173

vided into multiple regions that have correlated low frequency174

BOLD signals and whose overall activity and synchrony is175

related to ongoing cognitive states. Identifying the functional176

area of each DMN region can be challenging. There are177

four typical methods used to define DMN regions (reviewed178

in [14]). First, seed-voxel (or region) based approaches can179

be employed to determine where fMRI signal is correlated180

with a specific voxel (or region). A fundamental problem181

with this method is that a standard space seed voxel may not182

fall in the same region across subjects and/or the resultant183

intra-regional connectivity map may not represent the same184

network across subjects. Second, fMRI data can be analyzed185

with independent component analysis (ICA) that, with no a186

priori guidance, decomposes data into individual spatial com-187

ponents. However, components (i.e., regions and networks)188

identified in single subjects are highly variable and difficult189

to compare across subjects. Group ICA (e.g., dual regression)190

allows for the identification of common components, but the191

presence of these regions and networks in individual subjects192

is not ensured. Third, DMN regions may be defined by their193

correlated activity during a cognitive task (aka activation map).194

This univariate analysis allows for the assumption that the195

region is involved with a higher cognitive function but does not196

necessary mean that the regions are “working together” [15].197

In addition, regions taken from a group activation map may198

not represent the true location of the region in an individual.199

Fourth, anatomical constraints can be used to define DMN200

regions by dividing (parcellating) the cortex into varying201

numbers of regions. Although these standardized parcellation202

methods may be applied across studies, they introduce signif-203

icant errors given that cortical areas that represent functional204

regions (and hence the topology of local regions) likely vary205

across subjects.206

B. Alterations of DMN in Aging207

Higher cognitive abilities (memory, executive function, etc.)208

emerge from complex activity of distributed cortical regions,209

each variably specialized for one or more aspects of the210

cognitive process. Research suggests that cognitive decline,211

both age-related and pathological, may result from dysregu-212

lation of these large scale networks and that these changes213

can be mapped using resting state fMRI [16]. Several stud-214

ies have demonstrated a relationship between the connectiv-215

ity strength and/or the activity within DMN and cognitive216

decline [4], [17], [18], and overall, large-scale connectivity217

is thought to decline in older individuals [19], [20]. Graph218

theoretic approaches have found reduced centrality, or impor-219

tance, of frontal networks with increased centrality of the220

DMN in aging [21] although there are reports of decreased221

inter-regional DMN connectivity being associated with cogni- 222

tive decline [18]. These divergent findings justify our investi- 223

gation of the association between DMN and cognitive decline 224

in both normal and abnormal aging. Although changes in 225

overall DMN behavior would result in corresponding changes 226

in brain connectivity, especially associated with aging [22], 227

functional connectivity within DMN regions may provide 228

a more complete picture of fine-level dynamics and age- 229

related changes. Our study focuses on a network analysis that 230

incorporates intra-regional data into functional connectivity 231

quantification of the DMN rather than limiting ourselves to 232

a global “network” across DMN regions. 233

C. K-Cardinality Tree (KCT) Problem 234

Given a connected undirected graph with a cost function 235

defined on edges and a positive integer k, the KCT problem 236

is to find a minimal cost tree of a graph with exactly k edges. 237

The KCT formulation was first introduced in [23], where it was 238

proved to be NP-hard when 2 ≤ k ≤ |V | − 2, where V is the 239

number of vertices. The first integer programming formulation 240

of the KCT problem based on general subtour elimination 241

constraints (GSEC) was proposed in [23]. Because there are an 242

exponential number of constraints in terms of the graph size, 243

a branch-and-cut algorithm to solve the GSEC formulation 244

was later developed in [24]. However, the algorithm was 245

inefficient and only able to solve the instances up to 30 nodes. 246

In the literature, solution approaches of the KCT problem 247

are mostly heuristic and metaheuristic approaches [25]–[29]. 248

There have been a few studies on approximation algorithms 249

for the KCT problem [30]–[33] and many are based on the 250

primal & dual analysis that was motived by the prize-collecting 251

Steiner tree problem [34]. Although some of these methods 252

provided a reasonable solution time, they are quite hard to 253

implement and not generalizable. In addition to metaheuristic 254

approaches mentioned previously, over the past ten years there 255

have been only four main exact solution approaches based 256

on mixed-integer programming (MIP). First, two branch-and- 257

bound approaches were proposed to solve two KCT formu- 258

lations, one using multi-commodity flow (MCF) constraints 259

to enforce connectivity of the resulting tree and cycle pre- 260

vention and another using the Miller-Tucker-Zemlin (MTZ) 261

constraints [35]. The study also expanded the formulation 262

and applied a Lagrangian relaxation method, which could 263

be embedded into a branch-and-bound procedure. Second, 264

the GSEC reformulation was proposed in [36] based on 265

generalized cut set inequalities to eliminate subtours, and a 266

new branch-and-cut approach was employed to solve the KCT 267

problem. In addition, because the formulation is defined over a 268

digraph, they also proposed asymmetry constraints to exclude 269

symmetric solutions. Third, [37] proposed the rooted version 270

of KCT (RKCT), where a node to be included in the KCT solu- 271

tion is pre-determined. This approach solves the KCT problem 272

sequentially by selecting a different root node in each iteration 273

until all possible root nodes are considered. In the most recent 274

study, [38] presented a more advanced version of the branch- 275

and-cut approach proposed in [36]. Three new families of 276

valid inequalities were introduced, and two of them were facet 277
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defining inequalities for the polytope defined by the convex278

hull of feasible KCT solutions. The approach was shown to279

outperform all other approaches that have been developed,280

especially for grid-graph instances. It is also worth noting281

that all of the approaches mentioned above, except RKCT,282

were applied to the KCT reformulation defined over digraphs.283

Digraphs can be constructed by introducing two edges with284

the same end nodes and the opposite directions for every285

edge in the original graph, and adding one or more artificial286

nodes. Therefore, feasible solutions to the reformulation imply287

spanning arborescences for its digraph. Note that the above-288

mentioned approaches appear to work well on grid graphs,289

which are sparse. Because intra-nodal connectivity networks290

from fMRI data result in a very dense graph, existing KCT291

approaches are not efficient enough to solve networks of this292

size, and this motivates the methodological development in293

this paper.294

III. FUNCTIONAL CONNECTIVITY OF FMRI DATA295

A. Data Set296

The Seattle Longitudinal Study (SLS) is a cohort-sequential297

longitudinal study that began in 1956 with cognitive and298

behavioral assessment of all available prior participants and a299

new random sample occurring every 7-years. Cognitive mea-300

sures include an extensive battery of tests to examine memory,301

executive function, perceptual speed, and psychomotor speed.302

The total number of subjects in the SLS is 6,000, and there303

are currently 3, 000 active participants. From these active304

subjects, > 200 individuals for whom midlife cognitive data305

spanning > 3 assessments (i.e., 14 years) were selected for a306

longitudinal neuroimaging study of midlife cognitive change307

and risk of cognitive decline. Midlife cognitive data in three308

domains (episodic memory, executive function, psychomotor309

speed) was examined for each participant and they were310

categorized as declining or stable in each domain. The data311

set used in this study include 29 typically aging subjects312

for who > 10 years of longitudinal cognitive testing data313

were available. These subjects were selected from the Seattle314

Longitudinal Study [39] to undergo structural MRI, and func-315

tional imaging (resting state fMRI and task-associated fMRI).316

This paper is focused on the functional connectivity analysis317

of the resting state fMRI, which consists of 7.5-minutes of318

BOLD-fMRI data collected while subjects lay comfortably319

with their eyes open in the scanner (TR = 2 seconds). During320

midlife (defined as age 44-64), the 29 subjects were classified321

a priori as having declining (n = 11) or stable (n = 18)322

executive function based on word fluency, abstract reason-323

ing and cognitive flexibility. Demographic, neuroimaging and324

executive function characteristics of the subjects are provided325

in Table I. Note that although the decliners had declined earlier326

than (stable) non-decliners as well as had been at risk for327

progression to MCI, both decliners and non-decliners were not328

MCI at the time of scan when the subject data were collected.329

B. Data Pre-Processing330

At the individual level, resting state fMRI data were pre-331

processed using standard methods in FEAT (FMRI Expert332

TABLE I
CHARACTERISTICS OF SUBJECTS IN DECLINER AND STABLE GROUPS

Analysis Tool) Version 5.98, part of FSL (Functional MRI of 333

the Brain (FMRIB) Software Library, www.fmrib.ox.ac.uk/fsl). 334

Data pre-processing steps we employed to remove non- 335

neuronal sources of variance are as follows: non-brain removal 336

with the Brain Extraction Tool; motion correction with 337

MCFLIRT; spatial smoothing using a 6 mm full-width half- 338

maximum (FWHM) Gaussian kernel; high-pass temporal fil- 339

tering; bias-correction and grand-mean intensity normalization 340

of the entire 4D dataset; 3D despiking (afni.nimh.nih.gov), 341

removal of confounding signals (linear drift) through regres- 342

sion (white matter/CSF signal intensity time course, motion 343

parameters, and noise components estimated using ICA). Sub- 344

jects’ fMRI data were registered to their high-resolution struc- 345

tural scans by using a boundary-based registration procedure. 346

No subjects had excessive head motion during the scan; 347

therefore, we did not exclude any subjects in this analysis. 348

C. Data Analysis 349

After fMRI data were preprocessed, the next step of our 350

analysis was to isolate group and subject specific regions of 351

the DMN. After DMN regions for individual subjects were 352

obtained, we used the fMRI BOLD time series of all voxels 353

within each region to calculate an all pairwise correlation 354

coefficient matrix to construct a functional connectivity graph, 355

which was used as input of our KCT models. 356

1) Identifying DMN Regions: Traditionally DMN 357

regions have been defined either anatomically, using either 358

standardized cortical maps [40] or individually defined 359

regions, or functionally, by independent component analy- 360

sis (ICA) methods [41]. Although an anatomical scheme is 361

quite powerful, it raises potential confounds such as an arbi- 362

trary choice of threshold value applied to systematic sparsity 363

differences and the incorrect assumption that regions would be 364

of similar size and in precise enough cortical location across 365

individuals. To robustly identify DMN regions, we employed 366

a commonly used group ICA dual regression method [42] to 367

the entire subject population (both cognitive declining and 368

stable subjects). The process can be described as follows. 369

First, we performed group ICA analysis by (1) mapping fMRI 370

data of individual subjects in the population (n = 29) into a 371

standard space, (2) concatenating fMRI BOLD time series of 372

individual subjects and (3) subsequently running ICA analysis. 373

The components (regions) of the DMN were identified by 374

visual inspection of the group ICA results by pattern-matching 375



IEE
E P

ro
of

CHAOVALITWONGSE et al.: NETWORK OPTIMIZATION OF FUNCTIONAL CONNECTIVITY WITHIN DMN REGIONS 5

Fig. 2. DMN regions identified by dual regression from 29 subjects that are warped into two individual subjects’ brains. Top row illustrates three
different views of the DMN local regions of the two subjects: Sagittal View, Coronal View and Axial View, respectively. Bottom row shows the slice
views of the DMN local regions: MFC region (blue), PCC region (yellow), and the right and left DPC (green), and MTL (red).

TABLE II
THE RANGE, AVERAGE AND STANDARD DEVIATION OF THE NUMBERS

OF VOXELS (N) IN DIFFERENT DMN REGIONS ACROSS SUBJECTS

ICA components with typical DMN regions. Subsequently, the376

average fMRI BOLD signal of each identified ICA component377

was calculated for each subject and then used (in separate378

individual regression) to generate a new, subject specific map379

of the DMN regions. In this study, we selected the following380

6 local regions of the DMN, as shown in Figure 2:381

• Region 1: (Bilateral) Medial Frontal Cortex (MFC),382

• Region 2: (Bilateral) Posterior Cingulate Cortex (PCC),383

• Region 3: Left Dorsal Parietal Cortex (lDPC),384

• Region 4: Left Medial Temporal Lobe (lMTL),385

• Region 5: Right Dorsal Parietal Cortex (rDPC),386

• Region 6: Right Medial Temporal Lobe (rMTL).387

It is worth noting that there is no ground truth of the accurate388

DMN location for each individual subject. Based on the most389

commonly used DMN identification method, we found that390

a traditional group comparison of connectivity differences391

between groups yielded no significant difference among these392

6 DMN regions between cognitive declining and stable sub-393

jects. Because the DMN regions are defined in the standard394

MNI space, to perform analysis at the subject level the mask of395

each region is transformed to the subject space. This results in396

different number of voxels across different subjects. For each397

of the six DMN regions, Table II shows the range, average398

and standard deviation of the number of voxels (rounded to399

the nearest integer) in the subject space across all subjects.400

We note that the size of the KCT problem is defined by the401

number of voxels included in the region.402

2) Constructing Local Connectivity Graphs: After 403

DMN regions were defined, a local connectivity graph was cre- 404

ated for each DMN region based on the functional connectivity 405

matrix of all voxel pairs within the region. Specifically, the 406

connectivity matrix was constructed by calculating absolute 407

correlation coefficients between all pair-wise fMRI BOLD 408

time series of all voxels in the region. The local connectivity 409

graph is thus represented by a symmetric N × N functional 410

connectivity matrix of all voxel pairs, where N is the number 411

of voxels in the DMN region. Each entry of the matrix is 412

associated with a voxel, and represents an absolute correlation 413

coefficient between the voxel and another voxel in the DMN 414

region. The greater the entry value, the higher connectivity. 415

Note that the connectivity graph, which is the input into our 416

KCT approaches, is a full graph, in which there exists an edge 417

between every voxel (node) pair. From a neuroscientific stand 418

point, our graph is not anatomically constrained because, due 419

to a fissure (sulcus) on the surface of the brain, adjacent voxels 420

may be associated with different cortical fields. 421

IV. EXACT AND HEURISTIC KCT APPROACHES 422

The KCT model for characterizing intra-regional functional 423

connectivity can be mathematically modeled as follows. Let 424

G = (V , E) be a connected undirected graph with a set of 425

vertices V , each representing a fMRI voxel within a DMN 426

region, and a set of edges E , each representing a pair-wise 427

connectivity between voxel pairs within the DMN region. The 428

pair-wise connectivity cost of an edge is herein defined by 429

the z-score of the correlation coefficient between BOLD time 430

series of the two voxels connected by the edge. The positive 431

integer k is a parameter to control the size of the functional 432

connectivity tree, which in turn controls the number of selected 433

voxels in the DMN region. Traditional KCT problem is to find 434

a minimum cost tree with exactly k edges. In this paper, our 435
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KCT problem is to find the maximum cost tree as to construct436

the most highly connected voxels as a tree of size k within437

each DMN region, which can be transformed to a traditional438

KCT problem by multiplying the z-scores by -1.439

In this paper, we present two new mixed integer pro-440

gramming (MIP) formulations for the KCT problem. The441

main building blocks of our formulations are connectivity442

constraints and combinatorial constraints, which include car-443

dinality and degree constraints. The connectivity constraints444

are based on single commodity flow and cycle elimination to445

define a tree solution. The first formulation is called “single446

flow" model, which is much more compact as it uses a smaller447

number of flow variables compared to an existing multi-448

commodity flow formulation [35]. The second formulation,449

called “modified MTZ" model, uses node selector variables450

and provides a better LP relaxation bound than the MTZ451

model in the literature. We also introduce symmetry breaking452

constraints that can eliminate symmetrical solutions for the453

MIP formulations and speed up the computational efficiency454

of our model. Finally, we introduce a greedy algorithm to455

efficiently solve large-scale KCT problems.456

A. Structure and Cardinality: Connectivity Constraints457

Given an undirected graph G = (V , E), an edge e ∈ E458

is defined as {i, j} with endpoints of vertex i and j . For a459

given directed graph D = (V , A), we denote an arc a ∈ A460

whose start vertex is i and end vertex j by (i, j). For a subset461

of vertices S ⊂ A, we define the arc sets, δ+(S) = {(i, j) ∈462

A|i ∈ S, j �∈ S}, as the set of outgoing arcs for S, and δ−(S) =463

{(i, j) ∈ A|i �∈ S, j ∈ S}, as the set of incoming arcs for S.464

We use the notation δ+(i) and δ−(i) if S has a single vertex.465

We introduce our KCT formulations on a directed graph,466

therefore we transform KCT problem in an undirected graph467

G = (V , E) to a KCT problem in a directed graph468

D = (V , A) by replacing each edge {i, j} ∈ E with arcs469

(i, j) and ( j, i) with the same cost as the edge, i.e. c(i, j ) =470

c( j,i) = c{i, j }. Following a similar construction as in [36],471

we further consider augmenting D into D̂ = (V̂ , Â) by472

introducing an artificial root vertex with index 0 and additional473

arcs (0, i) for all i ∈ V with zero cost, such that V̂ = V ∪{0},474

and Â = A ∪{(0, i) ∀i ∈ A}. This root vertex along with any475

immediate arc are to be removed from the solution to reveal476

the solution to the KCT problem.477

We define xa ∈ {0, 1} to be arc selector variables and478

yi ∈ {0, 1} to be vertex selector variables. We build our KCT479

formulations incrementally to demonstrate the functionality480

of different sets of constraints. We start with the following481

combinatorial set that defines the combinatorial structure of482

the feasible solutions.483

SCC :
∑

a∈A

xa = k, (1a)484

∑

i∈V

yi = k + 1, (1b)485

∑

a∈δ−(i)

xa + x(0,i) = yi ∀ i ∈ V , (1c)486 ∑

a∈δ+(0)

xa = 1, (1d)487

x(i, j ) + x( j,i) ≤ yi ∀ (i, j) ∈ A, (1e)488

xa, yi ∈ {0, 1}, ∀ i ∈ V , ∀a ∈ A. (1f)489

Constraints (1a) and (1b) require that exactly k arcs and 490

k + 1 vertices must be selected from the original network. 491

Constraints (1c) require that a selected vertex can have only 492

one selected incoming arc, and none otherwise. Constraint (1d) 493

enforces that only one outgoing arc from the artificial root 494

vertex 0, which is used to determine the actual root of the 495

arborescence. Constraints (1e) require that either arc (i, j) or 496

its reverse arc ( j, i) should be selected if vertex i exists, and 497

neither otherwise. 498

Proposition 1: Each solution in SCC is composed of 499

connected components with at most one cycle. 500

Proof: Note that due to the constraint (1e), two-vertex 501

cycles are not possible in SCC . Due to the constraints (1d), 502

which imply that every vertex can have only one parent vertex 503

(except for vertex 0), one can start with any arbitrary vertex 504

and trace back to a root vertex or itself within a connected 505

component. Let C denote a connected component in a solution 506

that satisfies SCC . Assume that there are two cycles W1 ∈ C 507

and W2 ∈ C . Let W1 ∩ W2 �= ∅; then there is at least one 508

vertex in W1 ∩ W2, whose in-degree is 2. Thus, it contradicts 509

constraints (1d). Let W1∩W2 = ∅; then there is a directed path 510

between W1 and W2, which means that a vertex in W1 or W2 511

has in-degree of 2, which again contradicts (1d). 512

Proposition 1 implies that the connected components in 513

SCC are either directed trees or they contain a single cycle 514

that can be broken to construct an arborescence, which may 515

facilitate finding KCTP solutions after inserting connectivity 516

and subtour elimination constraints. 517

B. Cycle Prevention Constraints 518

We introduce two sets of cycle prevention constraints to 519

be integrated with the connectivity constraints introduced in 520

the previous section. This results in two alternative MIP 521

formulations to solve the KCT problem. 522

1) Single Commodity Flow (SCF) Constraints: One 523

possible way of assuring connectivity is to create a flow from 524

the root vertex to all of the other vertices via selected arcs, 525

which can be incorporated into our model by flow conserva- 526

tion constraints. Such constraints would establish connections 527

between separate connected components of a solution in SCC 528

and the cardinality constraint (1a) would prevent cycles, thus 529

creating a tree structure with k arcs. Let variable fa denote 530

a flow value on arc a, xa ∈ {0, 1} denote the arc selector 531

variables, and yi ∈ {0, 1} denote the vertex selector variables. 532

Then the following constraints establish connectivity through 533

conservation of flow: 534

SSC F :
∑

a∈δ+(i)

fa ≤ k yi , ∀i ∈ V , (2a) 535

∑

a∈δ−(i)

fa −
∑

a∈δ+(i)

fa = yi , i ∈ V , (2b) 536

fa = (k + 1)xa ∀a ∈ δ+(0) (2c) 537

fa ≤ kxa, ∀a ∈ A. (2d) 538

Constraints (2a) require that at most k units of flow can leave 539

a vertex if it is in the tree, and none otherwise. Constraints (2b) 540

ensure that one unit of flow is consumed by each vertex in the 541
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tree and constraints (2c) requires that the selected artificial arcs542

from vertex 0 will move k +1 units of flow to be distributed to543

the tree. Constraints (2d) require that at most k units of flow544

is permitted to flow on an arc a. Combining the properties545

of sets SCC and SSC F , we introduce a new single commodity546

flow formulation Eq. (3) to solve the KCT problem.547

PSC F : min
x,y, f

{
∑

a∈A

ca xa : (x, y, f ) ∈ SCC ∩ SS FC

}
(3)548

2) Miller-Tucker-Zemlin (MTZ) Constraints: MTZ549

constraints are proposed to eliminate subtours in the traveling550

salesman problem [43], which involve continuous variables551

that represent the depth of a vertex with respect to a root552

vertex. MTZ constraints can be lifted to produce tighter553

bounds as shown in [44], which are used to solve the KCT554

problem [35]. Let ui , i ∈ V denote the depth variables,555

xa ∈ {0, 1} denote the arc selector variables, and yi ∈ {0, 1}556

denote the vertex selector variables. Then, we incorporate the557

following lifted MTZ constraints to eliminate the cycles that558

may exist in the solutions of SCC .559

SMT Z : ui ≤ kyi ∀i ∈ V , (4a)560

(k+1)x(i, j )+(k−1)x( j,i)+ui − u j ≤ k ∀(i, j) ∈ A, (4b)561

(k + 1)x(0, j ) − u j ≤ k ∀(0, j) ∈ Â (4c)562

Constraints (4a) require that the depth of a vertex can at563

most be k. Constraints (4b) are MTZ constraints for the regular564

arcs in the network, and constraints (4c) are MTZ constraints565

for the additional arcs leaving the artificial root vertex 0 in566

the augmented network. Combining the properties of sets567

SCC and SSC F , we introduce the MTZ based formulation in568

Eq. (5) to solve the KCT problem.569

PMT Z : min
x,y,u

{
∑

a∈A

caxa : (x, y, u) ∈ SCC ∩ SMT Z

}
(5)570

C. Symmetry Breaking Constraints571

One drawback that is common to all of the above formu-572

lations that use directed graphs is the problem of symmetric573

solutions. In other words, there are k + 1 equivalent solutions,574

each starting with one of the k + 1 vertices as the root of575

the tree. A symmetry breaking constraint proposed by [38]576

significantly reduces the search tree in branch-and-bound or577

branch-and-cut type algorithms. It can be adapted to formula-578

tions PSC F and PMT Z by including the following constraints,579

∑

j>i

x(0, j ) + yi ≤ 1, ∀i ∈ V . (6)580

Let vertex j∗, where x(0, j∗)=1, be denoted as the actual root581

of the solution tree. Then, constraints (6) force the condition582 ∑
j>i x(0, j ) = 0 for any vertex i , where yi = 1. This means583

that vertices with indices larger than i cannot be the actual584

root in the solution, which implies that the index of the actual585

root has to be smaller than the indices of the other tree vertices586

to break the symmetry.587

Fig. 3. KCT-Kruskal: Greedy Algorithm.

D. Greedy Algorithm 588

To solve large instances of the KCT problem, which is 589

NP-hard [23], we introduce a greedy algorithm, as shown 590

in Fig. 3, to find a KCT solution based on Kruskal’s algo- 591

rithm for finding minimal spanning trees. Generally, Kruskal’s 592

algorithm grows a forest by adding connections in increasing 593

order of their costs. Starting with each vertex being a sep- 594

arate tree, in each iteration two trees merge together, until 595

there is one spanning tree. As the trees formed by Kruskal’s 596

algorithm in earlier iterations tend to have smaller costs due 597

to the inclusion of arcs in ascending order of their costs, 598

our algorithm keeps track of these low cost trees, and as 599

soon as one of the trees have k or larger arcs we stop the 600

execution of Kruskal’s algorithm. Then, we iteratively remove 601

the leaf arc with the largest cost from this tree until the 602

component has exactly k arcs. In the algorithm, we denote 603

the cost of all arcs with c(A). We assume that subroutine 604

Sorted ArcIndex(c(A)) returns the ordered indices I of arcs 605

sorted in ascending order of their costs, where Ii refers to 606

the i th index. We use A(k) to refer to arc with index k. 607

We denote the tree label of vertex i in a forest of trees with 608

T (i) and the degree of vertex i with deg(i). We denote the set 609

of arcs selected during the execution of Kruskal’s algorithm T , 610

the set of vertices in the most recent tree updated Tcurr and 611

the maximum tree size in the forest in terms of number of 612

vertices as tmax . Finally, we refer to the set of arcs in the 613

solution tree to be returned as T ∗. The time complexity of 614

the KCT-Kruskal heuristic algorithm is given in the following 615

proposition. 616

Proposition 2: KCT-Kruskal runs in O(|A| log |A|) time. 617

Proof: Kruskal’s algorithm is known to run in 618

O(|A| log |A|) time complexity. Updating vertex degrees and 619

removing the largest cost leaf arc can be done in constant 620

time using simple data structures, thus reduction of the tree to 621
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TABLE III
NUMBERS OF NON-FEASIBLE/SUB-OPTIMAL INSTANCES

(OUT OF 29 INSTANCES) FOR EACH MIP MODEL

appropriate size takes O(|A|) time. The overall complexity of622

the KCT-Kruskal algorithm is then O(|A| log |A|).623

V. COMPUTATIONAL RESULTS624

In this section, we present the computational results625

of our proposed models and heuristic approach on the626

fMRI data. All problems are solved using a Dell Precision627

T7600 workstation with two 2.0Ghz CPUs and 24 GB memory628

on a 64-bit Windows 7 platform. For the DMN analysis, the629

mathematical modeling is implemented in C� language using630

CPLEX callable library version 12.5. For every test instance,631

computation time limit was set to 1 hour (3,600 seconds).632

The heuristic approach was implemented in Matlab version633

2012b. Because there are different numbers of voxels in the634

same DMN region across subjects, we used parameter “K ” as635

a percentage of the number of voxels to be included from the636

total number of voxels in the region. We fixed the value of K637

to 10%, 25%, 50%, 75%. Note that when K = 100%, the KCT638

problem is equivalent to the minimum spanning tree (MST)639

problem, which can be solved efficiently by standard MST640

approaches.641

A. Computational Efficiency642

In this subsection, we first report an account of solution643

status of the 29 instances over each region, followed by644

solution times (with 1 hour run time limit) for four different645

MIP models and the heuristic method. We used the MTZ646

and SCF models with symmetry breaking constraints, the647

MCF model proposed by [35], and the MTZ model without648

symmetry breaking constraints (denoted by MTZ∗). Table III649

shows the solution status of MIP models for each region and650

K % as the count of non-feasible/sub-optimal. For example,651

for PCC region at K = 50%, out of 29 instances the MTZ652

model found a sub-optimal solution in 3 instances, achieved653

optimality in 4 instances, and was not able to find a feasible654

solution in 22 instances. From the table, we observe that655

the MCF model performed very poorly as it did not reach656

optimality in any region and K % combination. Thus we shall657

eliminate it from the remainder of the computational results.658

In the larger instances such as MFC and PCC regions with659

more than 500 nodes, we observe that optimality was rarely660

achieved by the MTZ and MTZ∗ models, and never achieved 661

by the SCF model. The MTZ model achieved sub-optimal 662

solutions in lower K % values, whereas the MTZ∗ model 663

achieved more sub-optimal results in higher K % values, but 664

both of them were better than the SCF model in these larger 665

regions. In the smaller regions with less than 500 nodes, the 666

MTZ model was better than the MTZ∗ and SCF models, 667

solving almost all instances in lower K % values and most 668

instances in higher K % values to optimality. 669

We show the average computational times for the MTZ, 670

MTZ∗ and SCF models and the heuristic method in Table IV. 671

The averages were calculated using only instances where opti- 672

mality was achieved, and Region-K % combinations without 673

any optimal solution is shown as ‘>3600’. From the table, the 674

MTZ model outperforms other MIP models in the relatively 675

larger regions with more than 200 nodes, where as the SCF 676

model outperforms other MIP models in the relatively smaller 677

regions with less than 200 nodes, except for the largest K % 678

value in rMTL region. When we compare average solution 679

times of the heuristic method (Heur.) and the MIP models, it is 680

clear that the heuristic solution is several magnitudes of order 681

faster than the MIP models. Due to the difficulty in finding 682

optimal solutions for MFC and PCC regions, solution times 683

for the MIP models in these regions are shown as ‘>3600’. We 684

also investigated the KCT solutions obtained by our heuristic 685

method and compared them with those obtained by the MTZ 686

model when the value of K % is varied from 10% to 75%. 687

We chose to use the MTZ model as a baseline because it is the 688

overall best MIP model. It was found that overall both MTZ 689

model and heuristic method did not produce different solutions 690

in most cases. In fact, the solutions were mostly identical 691

except the ones in left/right MTL regions with lower two K % 692

values. This observation is logical because both left/right MTL 693

regions are small, making the KCT problem sizes small. The 694

MTZ model terminated with an optimal solution, and obtained 695

better solutions. All in all, this result confirms that the quality 696

of the heuristic solution is very satisfactory. It should also be 697

noted that there is a large difference in the estimated connectiv- 698

ity between regions. Especially, there is a significant increase 699

in estimated connectivity when more voxels are included, such 700

as in bilateral LPC regions whereas estimated connectivity is 701

quite comparable between the contralateral hemispheres. 702

B. Discriminating Power 703

In this section, we investigate which DMN regions played 704

a significant role in separating subject groups into “decliners” 705

and “(stable) non-decliners” as well as compare the sensitivity 706

of our KCT approaches with different values of K . In addition, 707

we also employed the current state-of-the-art regional homo- 708

geneity (ReHo) approach to quantify the strength of intra- 709

nodal connectivity of each DMN region [11]. Table V reports 710

the p-values of statistical comparison between decliner vs. 711

non-decliner instances based on connectivity results obtained 712

from KCT and ReHo approaches. The bolded numbers in the 713

table represent p-value < 0.05, and one can observe that the 714

KCT solutions show more discriminating power when K % 715

is larger, i.e., more voxels are included in the tree. From the 716
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TABLE IV
AVERAGE SOLUTION TIMES (IN SECONDS) FOR DIFFERENT KCT APPROACHES

TABLE V
P-VALUES OF STATISTICAL COMPARISON OF THE CONNECTIVITY RESULTS FROM DIFFERENT KCT APPROACHES AND REGIONAL

HOMOGENEITY (REHO) BETWEEN DECLINER VS. NON-DECLINER INSTANCES

table, the KCT results identified both left and right MTLs as717

significant regions whereas the ReHo results from the ReHo718

results was able to detect only the left MTL region. More719

sensitive results provided by our KCT approaches suggest that720

both left and right MTLs are the key DMN regions that are721

significantly altered by cognitive decline and likely to be used722

as an early biomarker of midlife executive decliners.723

VI. CONCLUSION724

Accurate early detection of cognitive decline is extremely725

useful in subjects who start to transition to MCI and are726

likely to become demented as it will enable early diagnosis727

and intervention. This can substantially extend a patient’s728

lifespan and some treatments have different outcomes at729

different disease stages. Recent advanced knowledge about730

brain function through fMRI studies has allowed researchers731

and physicians to investigate the DMN, which is functionally732

active during the resting state, and linked disruptions in733

DMN connectivity with many brain disorders ranging from734

Alzheimer’s disease (AD), to autism spectrum disorder (ASD),735

to Parkinson’s disease (PD). However, previous DMN studies736

are mostly focused on large-scale connectivity between DMN737

regions, disregarding patterns of local connectivity. The overall738

goal of this study is to develop a network optimization739

framework as a computational tool to identify underlying,740

critical structures in local connectivity within individual DMN741

regions. As propagation pathway (tree-like) is believed to be742

the critical connectivity structure within DMN regions, this743

paper presents a model of critical connectivity within DMN744

regions as a KCT problem. This model is supported by several745

previous investigations, which conclude that the exact location746

and size of the brain regions that are involved in the DMN are747

not known. Thus one needs to investigate local connectivity748

of different sizes (varying the value of K % in our case).749

To solve the KCT problem, we introduced a novel compact750

MIP formulation based on single commodity flow (SCF)751

model and improved a formulation based on Miller-Tucker-752

Zemlin (MTZ) constraints by introducing node selector753

variables. These two models allowed KCT problem to be754

conveniently solved using commercial solvers. We incorpo- 755

rated symmetry breaking constraints, which are typically found 756

in branch-and-cut models for KCT, into our formulations to 757

enhance their performance. We also introduced a heuristic 758

method based on Kruskal’s algorithm for minimum spanning 759

trees. We conducted comparative computational experiments 760

on brain regions using our formulations and other compact 761

formulations in the literature. We showed that our SCF formu- 762

lation was effective in smaller instances and MTZ formulation 763

handled large problems well, while other formulations could 764

not even achieve optimality in any problem. We also provided 765

LP relaxation bounds for our two formulations to explain their 766

behavior in regards to different problem sizes. Some brain 767

regions were too large for any formulation to achieve optimal- 768

ity due to the fact that KCT is a NP-hard problem. However, 769

our heuristic method, which produced high-quality results to 770

optimal solutions in small and medium size problems, scaled 771

very well for the large instances with a running time several 772

magnitudes of order faster than the MIP models. 773

Identification of local connectivity strengths and config- 774

urations could provide a noninvasive biomarker for brain 775

health, and aid in the assessment of neuroprotective strategies. 776

The computational methods presented in this paper can be 777

considered as a necessary first step to develop useful tools 778

for system neuroimaging that can be employed and tested 779

a novel biomarker of cognitive decline for those who are at 780

risk of developing MCI and AD. These tools will also enable 781

the methodical uncovering of abnormal alterations in brain 782

function and bring fresh insight into mechanisms of brain 783

diseases. This will eventually lead to targeted therapeutics, 784

including cognitive enhancers and protective brain agents, 785

identify transition stages between normal brain aging to cog- 786

nitive impairment and perhaps evaluate functional networks of 787

cognitive phenotypes associated with MCI and AD. 788
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