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Abstract—The rapid aging of the world population is caus-
ing an increase in the prevalence of cognitive decline and
degenerative brain disease in the elderly. Current diagnoses of
amnestic and nonamnestic Mild Cognitive Impairment (MCI),
which may represent early stage Alzheimer’s disease or related
degenerative conditions, are based on on clinical grounds. The
recent emergence of advanced network analyses of functional
Magnetic Resonance Imaging (fMRI) data taken at cognitive
rest has provided insight that declining functional connectivity
of the default mode network (DMN) may be correlated with
neurological disorders, and particularly prodromal Alzheimer’s
disease. The goal of this paper is to develop a network analysis
technique using fMRI data to characterize transition stages
between healthy brain aging to cognitive decline. Previous studies
primarily focus on inter-nodal connectivity of the DMN and
often assume functional homogeneity within each DMN region.
In this paper, we develop a technique that focuses on identifying
critical intra-nodal connectivity DMN regions by incorporating
sparsity into connectivity modeling of the k-cardinality tree
(KCT) problem. Most biological networks are efficient and
formed by sparse connections, and the KCT can potentially reveal
sparse connectivity patterns that are biologically informative. The
KCT problem is NP-hard, and existing solution approaches are
mostly heuristic. Mathematical formulations of the KCT problem
in the literature are not compact and do not provide good solution
bounds. This paper presents new KCT formulations, which are
more compact (i.e., using a smaller number of decision variables)
and yield a better linear programming relaxation bound than
existing models. In addition, a fast heuristic is also developed
to efficiently solve the KCT models for large DMN regions. The
results in this study demonstrate that, while traditional fMRI
group analysis on DMN regions cannot detect any statistically
significant separation in connectivity strengths between normal
aging and cognitive decline subjects, the proposed KCT model
is more sensitive and is able to detect significant changes in the
medial temporal regions of the DMN.
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I. INTRODUCTION

DESPITE abundant evidence for cognitive decline as a
feature of normal aging, there is wide variability in the

extent and progression of these age-related changes [1]. Mild
cognitive impairment (MCI) has been defined as an interme-
diate stage between normal age-related cognitive changes and
dementia [2]. Current diagnosis of MCI is based the patient
or provider having an objective cognitive concern while their
overall cognitive function remains intact. This often results
in delayed detection and would hamper the dissemination
and utility neuroprotective treatments as they are developed
in the future. Thus, there is a pressing need for quantitative
neurophysiological methods that can be used to assess brain
function before overt cognitive decline occurs. This study
presents a step toward the development of a sensitive, non-
invasive neuroimaging tool to detect abnormal brain function
early prior to overt cognitive change. A novel network analysis
technique is developed to investigate if the strength and
structure of brain connectivity within functional regions are
altered and associated with cognitive decline.

Advances in functional magnetic resonance imaging (fMRI)
have allowed researchers to define alterations in large scale
neuronal networks that may be associated with abnormal
cognitive changes. In one popular paradigm, fMRI data is
acquired while an individual lies, resting, in the scanner
(aka resting state fMRI) and major “intrinsic” brain networks
are defined via correlations in low frequency (0.1-0.01 Hz)
spontaneous fluctuations in the blood oxygen level-dependent
(BOLD)-MRI signal. Intrinsic networks identified in resting
state fMRI show close correspondence to those found in task-
related functional imaging experiments supporting their func-
tional significance during cognition [3]. Default mode network
(DMN), which includes multiple spatially distinct regions in
all lobes of the cortex [4], [5], is among the major intrinsic
network defined via this method. Alterations of functional con-
nectivity in the DMN have been shown to be associated with
neurological disorders such as dementia [6], schizophrenia [7],
autism spectrum disorder [8], and depression [9]. However,
most conventional fMRI studies of the DMN focus on exam-
ining coarse functional connectivity between spatially distinct
DMN regions, called inter-regional connectivity, by simply
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averaging fMRI signals within DMN regions and measuring
correlation strengths as large-scale connectivity between the
regions. This approach simply assumes the homogeneity of
fMRI signals within individual DMN regions and overlooks
the importance of connectivity between fMRI signals in the
same region, called intra-regional connectivity. There has
been some evidence of disrupted connectivity within DMN
regions in neurodegenerative diseases but its role is still largely
unknown. For instance, alterations in connectivity structure
among the DMN regions were found in Alzheimer’s disease
(AD) but intact prefrontal and temporal networks were still
found in both elderly controls and AD patients [10]. Thus
investigation of intra-regional connectivity is worthwhile and
can be complementary to the existing inter-regional connec-
tivity studies in the literature.

Although the DMN regions are commonly defined within
the entire study subject group (for an “unbiased” comparison),
the actual functional regions for individual subjects can almost
certainly vary in size, shape and exact location. This makes
investigation of intra-regional connectivity with variable DMN
regions very challenging. For example, Figure 1 illustrates
the DMN regions defined by group analysis (n=29 subjects)
and compares the locations, sizes and shapes of DMN re-
gions constructed by the group DMN regions on 3 individual
subjects. The figure shows that larger regions (e.g., the right
dorsal parietal region of the DMN) are highly variable between
subjects (top row). This illustrates that identification of DMN
regions in an individual subject based on traditional group
analysis is not accurate. To address this challenge, we propose
a network optimization approach to characterize the strength
and structure of intra-regional connectivity by using a spanning
tree model. In network optimization, the most commonly used
spanning tree model is the minimum spanning tree (MST). The
MST has been used in a study of childhood-onset Schizophre-
nia [11] to investigate inter-regional functional connectivity
but has not been used to explore intra-regional connectivity.
Because the MST makes the unsubstantiated assumption that
every voxel has to be connected, the MST might not be
robust enough for intra-regional connectivity analysis as DMN
regions are not precisely defined and vary in size and location.
We propose the k-cardinality tree (KCT) model with varying
numbers of k voxels to be connected within each DMN region
to investigate the robustness and stability of intra-regional
functional connectivity by taking into account the functional
heterogeneity within individual DMN regions. Specifically, the
KCT model can identify the connected voxels with varying
sizes of the critical component within individual DMN re-
gions, and in turn investigate different locations and sizes of
functional connectivity within DMN regions. In contrast to the
standard MST, the KCT is NP-hard and very difficult to solve.
Existing KCT formulations in the literature are not scalable
and do not provide good solution bounds. We develop new
compact mathematical programming models, which provide
better linear programming relaxation bound than existing
models, and a new algorithm to efficiently solve large-scale
KCT models for large DMN regions. Using the proposed KCT
approach, we investigate alterations of functional connectivity
the DMN and other cognitive-related networks in a cross-

sectional sample of aging individuals with normal aging and
abnormal cognitive decline. The outcome of this study might
result in a non-invasive fMRI technique that could be used as
a diagnostic tool that is sensitive enough to detect alterations
in functional networks for early detection of MCI.

Figure ??: Variability in local nodes of the DMN identified by dual regression.  Top row 
illustrates variability in large nodes (pink box - right lateral parietal component of DMN) 
while the bottom row show the extreme heterogeneity of smaller nodes (pink box - left 
posterior hippocampus).  Group results from 29 subjects.

Group Subject A Subject B Subject C

Fig. 1. Variability in DMN regions identified by dual regression. Top row
illustrates variability in large regions (pink box - right dorsal parietal) while
the bottom row shows the extreme heterogeneity of smaller regions (pink box
- left posterior hippocampus). Group results from 29 subjects.

The remainder of the paper is organized as follows. In
Section 2, we give a brief background on current MCI and
AD studies, fMRI analyses and KCT solution approaches. In
Section 3, we provide detailed information of the dataset used
in this study, fMRI data pre-processing, and statistical analyses
to identify the DMN regions. In Section 4, we present mathe-
matical formulations for the KCT problem and a scalable, fast
heuristic. In Section 5, we present the computational results,
analyses of our findings and the outcome from a population-
based comparison. We provide conclusions and final remarks
in the final section of this paper.

II. BACKGROUND

A. Resting State fMRI and Default Mode Network (DMN)

In resting state fMRI, subjects are asked to rest, calmly
and comfortably, in the scanner and data is collected over 5-
10 minutes. Spatial correlations of low frequency oscillations
in the BOLD signal can then be used to map large scale
neural systems in the brain, i.e., functional connectivity [12].
Resting state fMRI has allowed neuroscientists to discover the
organization and connectivity of large-scale intrinsic cortical
networks (ICNs). Functional interactions within and between
these ICNs provides unique information about systems-level
brain function not obtainable through conventional task-based
fMRI and most other neuroimaging methods. The DMN is the
prototypical ICN. The DMN can be subdivided into multiple
regions that are have correlated low frequency BOLD signals
and whose overall activity and synchrony is related to ongoing
cognitive states. Identifying the functional area of each DMN
region can be challenging. There are four typical methods used
to define DMN regions (reviewed in [13]). First, seed-voxel (or
region) based approaches can be employed to determine where
fMRI signal is correlated with a specific voxel (or region).
A fundamental problem with this method is that a standard
space seed voxel may not fall in the same region across
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subjects and/or the resultant intra-regional connectivity map
may not represent the same network across subjects. Second,
fMRI data can be analyzed with independent component
analysis (ICA) that, with no a priori guidance, decomposes
data into individual spatial components. However, components
(i.e., regions and networks) identified in single subjects are
highly variable and difficult to compare across subjects. Group
ICA (e.g., dual regression) allows for the identification of
common components, but the presence of these regions and
networks in individual subjects is not ensured. Third, DMN
regions may be defined by their correlated activity during a
cognitive task (aka activation map). This univariate analysis
allows for the assumption that the region is involved with a
higher cognitive function but does not necessary mean that
the regions are “working together” [14]. In addition, regions
taken from a group activation map may not represent the true
location of the region in an individual. Fourth, anatomical
constraints can be used to define DMN regions by dividing
(parcellating) the cortex into varying numbers of regions.
Although these standardized parcellation methods may be
applied across studies, they introduce significant errors given
that cortical areas that represent functional regions (and hence
the topology of local regions) likely vary across subjects.

B. Alterations of DMN in Aging

Higher cognitive abilities (memory, executive function, etc.)
emerge from complex activity of distributed cortical regions,
each variably specialized for one or more aspects of the cog-
nitive process. Research suggests that cognitive decline, both
age-related and pathological, may result from dysregulation
of these large scale networks and that these changes can be
mapped using resting state fMRI [15]. Several studies have
demonstrated a relationship between the strength and/or the
activity within DMN and cognitive decline [4], [16], [17],
and overall, large-scale connectivity is thought to decline in
older individuals [18], [19]. Graph theoretic approaches have
found reduced centrality, or importance, of frontal networks
with increased centrality of the DMN in aging [20] although
there are reports of decreased DMN connectivity being asso-
ciated with cognitive decline [17]. These divergent findings
justify our investigation of the association between DMN
and cognitive decline in both normal and abnormal aging.
Although changes in overall DMN behavior would result
in corresponding changes in brain connectivity, functional
connectivity within DMN regions, which has also been shown
to change with aging [21], may provide a more complete
picture of the fine-level dynamics and age-related changes. Our
study focuses on a network analysis that incorporates intra-
regional data into functional connectivity quantification of the
DMN rather than limiting ourselves to a global “network”
among DMN regions.

C. K-Cardinality Tree (KCT) Problem

Given a connected undirected graph with a cost function
defined on edges and a positive integer k, the KCT problem
is to find a minimal cost tree of a graph with exactly k
edges. The KCT problem has been widely studied in various

application fields such as oil-field leasing, facility layout,
matrix decomposition, and telecommunication. The mathe-
matical programming formulation of KCT problem was first
introduced in [22], where it was proved to be NP-hard when
2 ≤ k ≤ |V | − 2. The first integer programming formulation
of the KCT problem based on general subtour elimination
constraints (GSEC) was proposed in [22]. Because there are an
exponential number of constraints in terms of the graph size,
a branch-and-cut algorithm to solve the GSEC formulation
was later developed in [23]. However, the algorithm was
inefficient and only able to solve the instances up to 30 nodes.
In the literature, solution approaches of the KCT problem
are mostly heuristic and metaheuristic approaches [24]–[28].
There have been a few studies on approximation algorithms
for the KCT problem [29]–[32] and many are based on the
primal & dual analysis that was motived by the prize-collecting
Steiner tree problem [33]. Although some of these methods
provided a reasonable solution time, they are quite hard to
implement and not generalizable. In addition to metaheuristic
approaches mentioned previously, over the past ten years there
have been only four main exact solution approaches based
on mixed-integer programming (MIP). First, two branch-and-
bound approaches were proposed to solve two KCT formula-
tions, one using multi-commodity flow (MCF) constraints to
enforce connectivity of the resulting tree and cycle prevention
and another using the Miller-Tucker-Zemlin (MTZ) constraints
[34]. The study also expanded the formulation and applied
a Lagrangian relaxation method, which could be embedded
into a branch-and-bound procedure. Second, the GSEC re-
formulation was proposed in [35] based on generalized cut
set inequalities to eliminate subtours, and a new branch-and-
cut approach was employed to solve the KCT problem. In
addition, because the formulation is defined over a digraph,
they also proposed asymmetry constraints to exclude symmet-
ric solutions. Third, [36] proposed the rooted version of KCT
(RKCT), where a node to be included in the KCT solution
is pre-determined. This approach solves the KCT problem
sequentially by selecting a different root node in each iteration
until all possible root nodes are considered. In the most recent
study, [37] presented a more advanced version of the branch-
and-cut approach proposed in [35]. Three new families of
valid inequalities were introduced, and two of them were facet
defining inequalities for the polytope defined by the convex
hull of feasible KCT solutions. The approach was shown to
outperform all other approaches that have been developed,
especially for grid-graph instances. It is also worth noting
that all of the approaches mentioned above, except RKCT,
were applied to the KCT reformulation defined over digraphs.
Digraphs can be constructed by introducing two edges with
the same end nodes and the opposite directions for every
edge in the original graph, and adding one or more artificial
nodes. Therefore, feasible solutions to the reformulation imply
spanning arborescences for its digraph. Note that the above-
mentioned approaches appear to work well on grid graphs,
which are sparse. Because the connectivity networks generated
by fMRI data result in a very dense graph, existing KCT
models and solution approaches are not efficient enough to
be scalable for networks of this size, and this motivates the



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 13, NO. 9, SEPTEMBER 2014 4

methodological development in this paper.

III. FUNCTIONAL CONNECTIVITY OF FMRI DATA

A. Data Set

The Seattle Longitudinal Study (SLS) is a cohort-sequential
longitudinal study that began in 1956 with cognitive and
behavioral assessment of all available prior participants and
a new random sample occurring every 7-years. Cognitive
measures include an extensive battery of tests to examine
memory, executive function, perceptual speed, and psychomo-
tor speed. There are currently > 600 active participants in
the SLS. From these active subjects, > 200 individuals for
whom midlife cognitive data spanning > 3 assessments (i.e.,
14 years) were selected for a longitudinal neuroimaging study
of midlife cognitive change and risk of cognitive decline.
Midlife cognitive data in three domains (episodic memory,
executive function, psychomotor speed) was examined for
each participant and they were categorized as declining or
stable in each domain. The data set used in this study include
29 typically aging subjects for who > 10 years of longitudinal
cognitive testing data were available. These subjects were
selected from the Seattle Longitudinal Study [38] to undergo
structural MRI, and functional imaging (resting state fMRI and
task-associated fMRI). This paper is focused on the functional
connectivity analysis of the resting fMRI, which consists of
a 7.5-minutes of BOLD-fMRI data collected while subjects
lay comfortably with their eyes open in the scanner. The 29
subjects were classified a priori as having declining (n = 11)
or stable (n = 18) executive function during midlife (defined
as age 44-64) based on word fluency, abstract reasoning and
cognitive flexibility.

B. Data Pre-Processing

At the individual level, resting state fMRI data were pre-
processed using standard methods which included motion
correction and regressing out white matter, cerebral spinal
fluid (CSF) and motion signals, but did not include spatial or
temporal filtering. Specifically, we used FEAT (FMRI Expert
Analysis Tool) Version 5.98, part of FSL (FMRIB’s Soft-
ware Library,www.fmrib.ox.ac.uk/fsl) to remove non-neuronal
sources of variance by conducting the following preprocessing
steps: non-brain removal with the Brain Extraction Tool,
motion correction with MCFLIRT; spatial smoothing using a
6 mm full-width half-maximum (FWHM) Gaussian kernel;
bias-correction and grand-mean intensity normalization; 3D
despiking (afni.nimh.nih.gov), removal of confounding signals
(linear drift) through regression (white matter/CSF signal in-
tensity time course, motion parameters, and noise components
estimated using ICA). Subjects’ fMRI data were registered
to their high-resolution structural scans by using a boundary-
based registration procedure.

C. Data Analysis

After fMRI data were preprocessed, the next step of our
analysis was to isolate group and subject specific regions of
the DMN. After DMN regions for individual subjects were

obtained, we used the fMRI BOLD time series of all voxels
within each region to calculate an all pairwise correlation
coefficient matrix to construct a functional connectivity graph,
which was used as input of our KCT models.

1) Identifying DMN regions.: Traditionally DMN regions
have been defined either anatomically, using either stan-
dardized cortical maps [39] or individually defined regions,
or functionally, by independent component analysis (ICA)
methods [40]. Although anatomical scheme is quite powerful,
it raises potential confounds such as an arbitrary choice of
threshold value applied to systematic sparsity differences and
the incorrect assumption that regions would be of similar size
and in precise enough cortical location across individuals.
To robustly identify DMN regions, we employed a group
ICA dual regression method [41], which can be described
as follows. First, we performed group ICA analysis by (1)
mapping fMRI data of individual subjects in the population
(n = 29) into a standard space, (2) concatenating fMRI BOLD
time series of individual subjects and (3) subsequently running
ICA analysis. The components (regions) of the DMN were
identified by visual inspection of the group ICA results by
pattern-matching ICA components with typical DMN regions.
Subsequently, the average fMRI BOLD signal was calculated
for each individual and then used (in separate individual
regression) to generate a new, subject specific map of the DMN
regions. In this study, we selected the following 6 local regions
of the DMN, as shown in Figure 2:
• Region 1: (Bilateral) Medial Frontal Cortex (MFC),
• Region 2: (Bilateral) Posterior Cingulate Cortex (PCC),
• Region 3: Left Dorsal Parietal Cortex (lDPC),
• Region 4: Left Medial Temporal Lobe (lMTL),
• Region 5: Right Dorsal Parietal Cortex (rDPC),
• Region 6: Right Medial Temporal Lobe (rMTL).
2) Constructing local connectivity graphs.: After DMN

regions were defined, a local connectivity graph was created
for each DMN region based on the functional connectivity
matrix of all voxel pairs within the region. Specifically, the
connectivity matrix was constructed by calculating absolute
correlation coefficients between all pair-wise fMRI BOLD
time series of all voxels in the region. The local connectivity
graph is thus represented by a symmetric N × N functional
connectivity matrix of all voxel pairs, where N is the number
of voxels in the DMN region. Each entry of the matrix is
associated with a voxel, and represents an absolute correlation
coefficient between the voxel and other voxel in the DMN
region. The greater the entry value, the higher connectivity.
Note that the connectivity graph, which is the input into our
KCT approaches, is a full graph, in which there exists an edge
between every voxel (node) pair. From a neuroscientific stand
point, our graph is not anatomically constrained because, due
to a fissure (salcus) on the surface of the brain, adjacent voxels
may be associated with different cortical fields.

IV. EXACT AND HEURISTIC SOLUTION APPROACHES FOR
THE KCT PROBLEM

The KCT model for characterizing intra-regional functional
connectivity can be mathematically modeled as follows. Let
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Fig. 2. DMN regions identified by dual regression from 29 subjects that are warped into two individual subjects’ brains. Top row illustrates three different
views of the DMN local regions of the two subjects: Sagittal View, Coronal View and Axial View, respectively. Bottom row shows the slice views of the
DMN local regions: MFC region (blue), PCC region (yellow), and the right and left DPC (green), and MTL (red).

G = (V,E) be a connected undirected graph with a set of
vertices V , each representing a fMRI voxel within a DMN
region, and a set of edges E, each representing a pair-wise
connectivity between voxel pairs within the DMN region. The
pair-wise connectivity cost of an edge is herein defined by the
z-score of correlation coefficient between BOLD time series of
the two voxels connected by the edge. The positive integer k is
a parameter to control the size of the functional connectivity
tree, which in turn controls the number of selected voxels
in the DMN region. Traditional KCT problem is to find a
minimum cost tree with exactly k edges. In this paper, our
KCT problem is to find the maximum cost tree as to construct
the most highly connected voxels as a tree of size k within
each DMN node, which can be transformed to a traditional
KCT problem by multiplying the z-scores by -1.

In this paper, we present two new mixed integer pro-
gramming (MIP) formulations for the KCT problem. The
main building blocks of our formulations are connectivity
constraints and combinatorial constraints, which include car-
dinality and degree constraints. The connectivity constraints
are based on single commodity flow and cycle elimination to
define a tree solution. The first formulation is called “single
flow” model, which is much more compact as it uses a smaller
number of flow variables compared to an existing multi-
commodity flow formulation [34]. The second formulation,
called “modified MTZ” model, uses node selector variables
and provides a better LP relaxation bound than the MTZ
model in the literature. We also introduce symmetry breaking
constraints that can eliminate symmetrical solutions for the
MIP formulations and speed up the computational efficiency
of our model. Finally, we introduce a greedy algorithm to

efficiently solve large-scale KCT problems.

A. Structure and Cardinality: Connectivity Constraints

Given an undirected graph G = (V,E), an edge e ∈ E
is defined as {i, j} with endpoints of vertex i and j. For
a given directed graph D = (V,A), we denote an arc
a ∈ A whose start vertex is i and end vertex j by (i, j).
For a subset of vertices S ⊂ A, we define the arc sets,
δ+(S) = {(i, j) ∈ A|i ∈ S, j 6∈ S}, as the set of outgoing
arcs for S, and δ−(S) = {(i, j) ∈ A|i 6∈ S, j ∈ S}, as the set
of incoming arcs for S. We use the notation δ+(i) and δ−(i)
if S has a single vertex.

We introduce our KCT formulations on a directed graph,
therefore we transform KCT problem in an undirected graph
G = (V,E) to a KCT problem in a directed graph D =
(V,A) by replacing each edge {i, j} ∈ E with arcs (i, j) and
(j, i) with the same cost as the edge, i.e. c(i,j) = c(j,i) =
c{i,j}. Following a similar construction as in [35], we further
consider augmenting D into D̂ = (V̂ , Â) by introducing an
artificial root vertex with index 0 and additional arcs (0, i)
for all i ∈ V with zero cost, such that V̂ = V ∪ {0}, and
Â = A ∪ {(0, i) ∀i ∈ A}. This root vertex along with any
immediate arc are to be removed from the solution to reveal
the solution to the KCT problem.

We define xa ∈ {0, 1} to be arc selector variables and
yi ∈ {0, 1} to be vertex selector variables. We build our KCT
formulations incrementally to demonstrate the functionality
of different sets of constraints. We start with the following
combinatorial set that defines the combinatorial structure of
the feasible solutions.
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SCC :
∑
a∈A

xa = k, (1a)∑
i∈V

yi = k + 1, (1b)∑
a∈δ−(i)

xa + x(0,i) = yi ∀ i ∈ V, (1c)

∑
a∈δ+(0)

xa = 1, (1d)

x(i,j) + x(j,i) ≤ yi ∀ (i, j) ∈ A, (1e)
xa, yi ∈ {0, 1}, ∀ i ∈ V, ∀a ∈ A. (1f)

Constraints (1a) and (1b) require that exactly k arcs and
k + 1 vertices must be selected from the original network.
Constraints (1c) require that a selected vertex can have only
one selected incoming arc, and none otherwise. Constraint (1d)
enforces that only one outgoing arc from the artificial root
vertex 0, which is used to determine the actual root of the
arborescence. Constraints (1e) require that either arc (i, j) or
its reverse arc (j, i) should be selected if vertex i exists, and
neither otherwise.

Proposition 1: Each solution in SCC is composed of con-
nected components with at most one cycle.

Proof: Note that due to the constraint (1e), two-vertex
cycles are not possible in SCC . Due to the constraints (1d),
which imply that every vertex can have only one parent vertex
(except for vertex 0), one can start with any arbitrary vertex
and trace back to a root vertex or itself within a connected
component. Let C denote a connected component in a solution
that satisfies SCC . Assume that there are two cycles W1 ∈ C
and W2 ∈ C. Let W1 ∩W2 6= ∅; then there is at least one
vertex in W1 ∩W2, whose in-degree is 2. Thus, it contradicts
constraints (1d). Let W1 ∩W2 = ∅; then there is a directed
path between W1 and W2, which means that a vertex in W1

or W2 has in-degree of 2, which again contradicts (1d).
Proposition 1 implies that the connected components in

SCC are either directed trees or they contain a single cycle
that can be broken to construct an arborescence, which may
facilitate finding KCTP solutions after inserting connectivity
and subtour elimination constraints.

B. Cycle Prevention Constraints

We introduce two sets of cycle prevention constraints to
be integrated with the connectivity constraints introduced in
the previous section. This results in two alternative MIP
formulations to solve the KCT problem.

1) Single Commodity Flow (SCF) Constraints:: One pos-
sible way of assuring connectivity is to create a flow from the
root vertex to all of the other vertices via selected arcs, which
can be incorporated into our model by flow conservation con-
straints. Such constraints would establish connections between
separate connected components of a solution in SCC and the
cardinality constraint (1a) would prevent cycles, thus creating
a tree structure with k arcs.

Let variable fa denote a flow value on arc a, xa ∈ {0, 1}
denote the arc selector variables, and yi ∈ {0, 1} denote

the vertex selector variables. Then the following constraints
establish connectivity through conservation of flow:

SSCF :
∑

a∈δ+(i)

fa ≤ k yi, ∀i ∈ V, (2a)

∑
a∈δ−(i)

fa −
∑

a∈δ+(i)

fa = yi, i ∈ V, (2b)

fa = (k + 1)xa ∀a ∈ δ+(0) (2c)
fa ≤ kxa, ∀a ∈ A. (2d)

Constraints (2a) require that at most k units of flow can
leave a vertex if it is in the tree, and none otherwise. Con-
straints (2b) ensure that one unit of flow is consumed by each
vertex in the tree and constraints (2c) requires that the selected
artificial arcs from vertex 0 will move k + 1 units of flow to
be distributed to the tree. Constraints (2d) require that at most
k units of flow is permitted to flow on an arc a.

The following proposition combines the properties of sets
SCC and SSCF to introduce a single commodity flow formu-
lation to solve the KCT problem.

Proposition 2: Formulation,

PSCF : min
x,y,f

{∑
a∈A

caxa : (x, y, f) ∈ SCC ∩ SSFC

}
, (3)

solves the KCT problem.
Proof: Proposition 1 states that solutions in SCC have

cardinality k and are composed of connected components that
have at most one cycle or no cycles (trees). By construction,
SF requires a connected structure. Then, (x, y, f) ∈ SCC∩SF
defines a connected structure with cardinality k, which can
only be a k-tree. The objective minimizes the construction
cost of a feasible k-tree, thus solves the KCT problem.

2) Miller-Tucker-Zemlin (MTZ) Constraints:: MTZ con-
straints are proposed to eliminate subtours in the traveling
salesman problem [42], which involve continuous variables
that represent the depth of a vertex with respect to a root
vertex. MTZ constraints can be lifted to produce tighter bounds
as shown in [43], which are used to solve the KCT problem
[34].

Let ui, i ∈ V denote the depth variables, xa ∈ {0, 1} denote
the arc selector variables, and yi ∈ {0, 1} denote the vertex
selector variables. Then, we incorporate the following lifted
MTZ constraints to eliminate the cycles that may exist in the
solutions of SCC .

SMTZ : ui ≤ kyi ∀i ∈ V,
(4a)

(k + 1)x(i,j) + (k − 1)x(j,i) + ui − uj ≤ k ∀(i, j) ∈ A,
(4b)

(k + 1)x(0,j) − uj ≤ k ∀(0, j) ∈ Â
(4c)

Constraints (4a) require that the depth of a vertex can at
most be k. Constraints (4b) are MTZ constraints for the regular
arcs in the network, and constraints (4c) are MTZ constraints
for the additional arcs leaving the artificial root vertex 0 in the
augmented network.
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The following proposition combines the properties of sets
SCC and SSCF to introduce the MTZ based formulation to
solve the KCT problem.

Proposition 3: Formulation,

PMTZ : min
x,y,u

{∑
a∈A

caxa : (x, y, u) ∈ SCC ∩ SMTZ

}
(5)

solves the KCT problem.
Proof: MTZ constraints in SMTZ eliminate any cycles

that may occur in any connected component of a solution
in SCC . This implies that the connected components in
(x, y, u) ∈ SCC ∩ SMTZ would constitute a forest. Fur-
thermore, assuming more than one tree in such forest would
violate the cardinality constraint in SCC , which means that a
feasible solution can only be a k-cardinality tree. The objective
of KMTZ minimizes the cost of such a tree, thus solves the
KCT problem.

C. Symmetry Breaking Constraints

One drawback that is common to all of the above formu-
lations that use directed graphs is the problem of symmetric
solutions. In other words, there are k+1 equivalent solutions,
each starting with one of the k + 1 vertices as the root of
the tree. A symmetry breaking constraint proposed by [37]
significantly reduces the search tree in branch-and-bound or
branch-and-cut type algorithms. It can be adapted to formula-
tions PSCF and PMTZ by including the following constraints,∑

j>i

x(0,j) + yi ≤ 1, ∀i ∈ V. (6)

Let vertex j∗, where x(0,j∗)=1, be denoted as the actual root
of the solution tree. Then, constraints (6) force the condition∑
j>i x(0,j) = 0 for any vertex i, where yi = 1. This means

that vertices with indices larger than i cannot be the actual
root in the solution, which implies that the index of the actual
root has to be smaller than the indices of the other tree vertices
to break the symmetry.

D. Greedy Algorithm

Due to the fact that KCT problem is NP-hard [22], large
problem instances may become intractable. For such cases,
we introduce a greedy algorithm to find a KCT solution
based on Kruskal’s algorithm for finding minimal spanning
trees. Generally, Kruskal’s algorithm grows a forest by adding
connections in increasing order of their costs. Starting with
each vertex being a separate tree, in each iteration two trees
merge together, until there is one spanning tree. The key
observation in Kruskal’s algorithm is that the trees formed in
earlier iterations tend to have smaller costs due to the inclusion
of arcs in ascending order of their costs. We, therefore, keep
track of these expectedly low cost trees, and as soon as one
of the trees have k or larger arcs we stop the execution of
Kruskal’s algorithm. Then, we iteratively remove the leaf arc
with the largest cost from this tree until the component has
exactly k arcs. We provide our heuristic in Algorithm 3.

In Algorithm of Fig. 3, we denote the cost of all arcs with
c(A). We assume that subroutine SortedArcIndex(c(A))

Input: D = (V,A)
Output: T∗

I ← SortedArcIndex(c(A))
T (i)← i ∀i ∈ V
deg(i)← 0 ∀i ∈ V
i← 0, T ← ∅, tmax ← 0
while TRUE do
i← i+ 1
a← A(Ii)
if T (t(a)) 6= T (h(a)) then
T ← T ∪ a
T (j)← T (t(a)) ∀j : T (j) = T (h(a)
deg(t(a))← deg(t(a)) + 1
deg(h(a))← deg(h(a)) + 1
Tcurr ← {j : T (j) = T (t(a))}
if |Tcurr| > tmax then
tmax ← |Tcurr|
if tmax > k then

break
end if

end if
end if

end while
T∗ ← {a ∈ T : t(a) ∪ h(a) ∈ Tcurr}
while |T∗| > k do
a∗ ← argmax{a ∈ T∗ : deg(t(a)) = 1 ∨ deg(h(a)) = 1}
T∗ ← T∗ \ a∗
deg(t(a∗) = deg(t(a∗))− 1
deg(h(a∗) = deg(h(a∗))− 1

end while
return T∗

Fig. 3. KCT-Kruskal: Greedy Algorithm

returns the ordered indices I of arcs sorted in ascending order
of their costs, where Ii refers to the ith index. We use A(k)
to refer to arc with index k. We denote the tree label of vertex
i in a forest of trees with T (i) and the degree of vertex i with
deg(i). We denote the set of arcs selected during the execution
of Kruskal’s algorithm T , the set of vertices in the most recent
tree updated Tcurr and the maximum tree size in the forest in
terms of number of vertices as tmax. Finally, we refer to the
set of arcs in the solution tree to be returned as T ∗.

Lines 3 to 23 of Algorithm in Fig. 3 is the Krusal algorithm,
where check for the size of the maximum tree (in terms of
vertex numbers) is done between lines 18 and 20 to stop the
execution of Kruskal’s algorithm. The leaf arcs with maximum
costs are iteratively eliminated until there are k arcs in the
tree between lines 25 and 30. The time complexity of the
KCT-Kruskal heuristic algorithm is given in the following
proposition.

Proposition 4: KCT-Kruskal runs in O(|A| log |A|) time.
Proof: Kruskal’s algorithm is known to run in

O(|A| log |A|) time complexity. Updating vertex degrees and
removing the largest cost leaf arc can be done in constant
time using simple data structures, thus reduction of the tree to
appropriate size takes O(|A|) time. The overall complexity of
the KCT-Kruskal algorithm is then O(|A| log |A|).

V. COMPUTATIONAL RESULTS

In this section, we present the computational results of
our proposed models and heuristic approach on the fMRI
data. All problems are solved using a Dell Precision T7600
workstation with two 2.0Ghz CPUs and 24 GB memory on
a 64-bit Windows 7 platform. For the DMN analysis, the
mathematical modeling is implemented in C] language using
CPLEX callable library version 12.5. For every test instance,
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computation time limit was set to 1 hour (3,600 seconds). The
heuristic approach was implemented in Matlab version 2012b.

Because the DMN regions are defined in the standard MNI
space, to perform analysis at the subject level the mask of
each region is transformed to the subject space. This results
in different number of voxels across different subjects. Thus
the value of “K” was fixed as a percentage of the number of
voxels to be included from the total number of voxels in the
region. We fixed the value of K to 10%, 25%, 50%, 75%.
Note that when K = 100%, the KCT problem is equivalent
to the minimum spanning tree (MST) problem, which can be
solved efficiently.

For each of the six DMN regions, Table I shows the
range, average and standard deviation of the number of voxels
(rounded to the nearest integer) in the subject space across all
subjects. We note that the size of the KCT problem is defined
by the number of voxels included in the region.

TABLE I
THE RANGE AND THE AVERAGE AND STANDARD DEVIATION OF THE

PROBLEM SIZES ACROSS DIFFERENT SUBJECTS .

Statistics DMN Regions
MFC PCC lLPC lMTL rLPC rMTL

Range [Min–Max] [719–1062] [538–929] [222–317] [93–128] [310–479] [110–189]
Average ± std 878 ± 83 716 ± 94 271 ± 25 109 ± 9 401 ± 38 147 ± 18

A. Computational Efficiency

In this subsection, we first report an account of solution
status of the 29 instances over each region, followed by
solution times (with 1 hour run time limit) for four different
MIP models and the heuristic method. We used the MTZ
and SCF models with symmetry breaking constraints, the
MCF model proposed by [34], and the MTZ model without
symmetry breaking constraints (denoted by MTZ∗). Table II
shows the solution status of MIP models for each region and
K% as the count of non-feasible/sub-optimal. For example,
for PCC region at K = 50%, out of 29 instances the MTZ
model found a sub-optimal solution in 3 instances, achieved
optimality in 4 instances, and was not able to find a feasible
solution in 22 instances. From the table, we observe that
the MCF model performed very poorly as it did not reach
optimality in any region and K% combination. Thus we shall
eliminate it from the remainder of the computational results. In
the larger instances such as MFC and PCC regions with more
than 500 nodes, we observe that optimality was rarely achieved
by the MTZ and MTZ∗ models, and never achieved by the
SCF model. The MTZ model achieved sub-optimal solutions
in lower K% values, where as the MTZ∗ model achieved more
sub-optimal results in higher K% values, but both of them
were better than the SCF model in these larger regions. In
the smaller regions with less than 500 nodes, the MTZ model
was better than the MTZ∗ and SCF models, solving almost all
instances in lower K% values and most instances in higher
K% values to optimality.

We show the average computational times for the MTZ,
MTZ∗ and SCF models and the heuristic method in Table III.
The averages were calculated using only instances where op-
timality was achieved, and Region-K% combinations without

TABLE II
non-feasible/sub-optimal INSTANCE COUNTS OUT OF 29 INSTANCES FOR

EACH MIP MODEL.

“K%” 10% 25%
DMN Region MTZ MTZ* SCF MCF MTZ MTZ* SCF MCF

MFC 0/28 7/22 29/0 29/0 0/27 22/6 29/0 29/0
PCC 0/26 5/24 18/11 29/0 1/20 18/10 29/0 29/0
lLPC 0/0 0/6 0/0 10/19 0/0 0/11 0/2 27/2
lMTL 0/0 0/0 0/0 8/21 0/2 0/1 0/0 1/21
rLPC 0/1 0/8 0/0 12/17 3/0 3/12 0/17 29/0
rMTL 0/0 0/0 0/0 11/18 0/0 0/1 0/0 10/19
“K%” 50% 75%

DMN Region MTZ MTZ* SCF MCF MTZ MTZ* SCF MCF
MFC 27/2 23/6 29/0 29/0 29/0 27/2 29/0 29/0
PCC 22/3 9/20 29/0 29/0 27/0 20/9 28/1 29/0
lLPC 1/1 0/23 0/6 29/0 0/0 0/29 0/7 29/0
lMTL 0/0 0/3 0/0 17/12 0/0 0/5 0/0 19/10
rLPC 9/4 5/24 3/22 29/0 4/2 11/18 3/24 29/0
rMTL 0/0 0/9 0/0 2/27 0/0 0/12 0/0 5/24

any optimal solution is shown as ‘>3600’. From the table, the
MTZ model outperforms other MIP models in the relatively
larger regions with more than 200 nodes, where as the SCF
model outperforms other MIP models in the relatively smaller
regions with less than 200 nodes, except for the largest K%
value in rMTL region. When we compare average solution
times of the heuristic method (Heur.) and the MIP models, it is
clear that the heuristic solution is several magnitudes of order
faster than the MIP models. Due to the difficulty in finding
optimal solutions for MFC and PCC regions, solution times for
the MIP models in these regions are shown as ‘> 3600’. We
also investigated the KCT solutions obtained by our heuristic
method and compared them with those obtained by the MTZ
model when the value of K% is varied from 10% to 75%. We
chose to use the MTZ model as a baseline because it is the
overall best MIP model. It was found that overall both MTZ
model and heuristic method did not produce different solutions
in most cases. In fact, the solutions were mostly identical
except the ones in left/right MTL regions with lower two K%
values. This observation is logical because both left/right MTL
regions are small, making the KCT problem sizes small. The
MTZ model terminated with an optimal solution, and obtained
better solutions. All in all, this result confirms that the quality
of the heuristic solution is very satisfactory. It should also be
noted that there is a large deference in the estimated connectiv-
ity between regions. Especially, there is a significant increase
in estimated connectivity when more voxels are included, such
as in left/right LPC regions whereas estimated connectivity is
quite comparable between the contralateral hemispheres (i.e.,
left vs. right).

B. Discriminating Power

To investigate which DMN regions played a significant
role in separating subject groups into “decliners” and “non-
decliners”, for each individual region we isolated the PNOFs
of the two groups. Table IV reports the p-values of both MTZ
model and heuristic method. The bolded numbers in the table
represent p-value < 0.05, and one can observe that the KCT
solutions show more discriminating power when K% is larger,
i.e., more voxels are included in the tree. For both MTZ
model and heuristic approach, the results can conclude that
left and right MTL regions are the key DMN regions that are
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TABLE III
AVERAGE SOLUTION TIMES IN SECONDS FOR EACH MIP MODEL.

“K%” 10% 25% 50% 75%
DMN Region MTZ MTZ* SCF Heur. MTZ MTZ* SCF Heur. MTZ MTZ* SCF Heur. MTZ MTZ* SCF Heur.

MFC >3600 >3600 >3600 1.08 >3600 >3600 >3600 1.17 >3600 >3600 >3600 1.70 >3600 >3600 >3600 2.81
PCC >3600 >3600 >3600 1.56 >3600 >3600 >3600 1.71 >3600 >3600 >3600 1.61 >3600 >3600 >3600 2.31
lLPC 584 1233 609 0.53 634 2009 958 0.39 1399 3096 2059 0.53 1028 > 3600 2090 0.84
lMTL 114 126 22 0.66 141 216 31 0.27 105 748 47 0.46 68 1103 56 1.01
rLPC 1240 2101 1591 0.89 1705 2668 3135 0.97 2447 >3600 3457 0.80 2285 >3600 3541 1.13
rMTL 188 253 68 0.69 187 539 105 0.80 151 1665 130 0.44 181 1948 252 0.53

significantly altered by cognitive decline and likely to be used
as an early biomarker of midlife executive decliners.

TABLE IV
COMPARISON OF P-VALUES FOR DECLINER VS. NON-DECLINER
INSTANCES USING THE HEURISTIC METHOD AND MTZ MODEL.

“K%” 10% 25% 50%
DMN Region Heur. MTZ Heur. MTZ Heur. MTZ

MFC 0.9974 N/A 0.7539 N/A 0.5801 N/A
PCC 0.2311 N/A 0.5049 N/A 0.8971 N/A
lLPC 0.7152 0.6393 0.4929 0.5362 0.4314 0.4148
lMTL 0.1176 0.0898 0.0998 0.0373 0.0363 0.0251
rLPC 0.8163 0.9724 0.9201 0.9160 0.7639 0.7493
rMTL 0.3273 0.3412 0.0581 0.0469 0.0253 0.0270
“K%” 75% 100%

DMN Region Heur. MTZ Heur. MTZ
MFC 0.4762 N/A 0.4231 N/A
PCC 0.8674 N/A 0.7603 N/A
lLPC 0.3449 0.3899 0.3994 N/A
lMTL 0.0115 0.0106 0.0082 N/A
rLPC 0.6793 0.6484 0.6180 N/A
rMTL 0.0260 0.0217 0.0264 N/A

VI. CONCLUSION

Timely and humane care for individuals living with de-
generative dementia is an increasingly important challenge to
all developed societies. Accurate early detection of cognitive
decline is extremely useful in subjects who start to transition to
MCI and are likely to become demented. This will enable early
diagnosis and intervention, which can substantially extend a
patient’s lifespan and some treatments have different outcomes
at different disease stages. Recent advanced knowledge about
brain function through fMRI studies has allowed researchers
and physicians to investigate the DMN, which is functionally
active during the resting state, and linked disruptions in
DMN connectivity with many brain disorders ranging from
Alzheimer’s disease (AD), to autism spectrum disorder (ASD),
to Parkinson’s disease (PD).

However, previous DMN studies are mostly focused on
large-scale connectivity between DMN regions, disregarding
patterns of local connectivity. The overall goal of this study
is to develop a network optimization framework as a compu-
tational tool to identify underlying, critical structures in local
connectivity within individual DMN regions. As propagation
pathway (tree-like) is believed to the critical connectivity
structure within DMN regions, this paper presents a model of
critical connectivity within DMN regions as a KCT problem.
This model is supported by several previous investigations,
which conclude that the exact location and size of the brain
regions that are involved in the DMN are not known. Thus
one needs to investigate local connectivity of different sizes
(varying the value of K% in our case).

To solve the KCT problem, we introduced a novel compact
MIP formulation based on single commodity flow (SCF)
model and improved a formulation based on Miller-Tucker-
Zemlin (MTZ) constraints by introducing node selector vari-
ables. These two models allowed KCT problem to be con-
veniently solved using commercial solvers. We incorporated
symmetry breaking constraints, which are typically found in
branch-and-cut models for KCT, into our formulations to
enhance their performance. We also introduced a heuristic
method based on Kruskal’s algorithm for minimum spanning
trees. We conducted comparative computational experiments
on brain regions using our formulations and other compact
formulations in the literature. We showed that our SCF formu-
lation was effective in smaller instances and MTZ formulation
handled large problems well, while other formulations could
not even achieve optimality in any problem. We also provided
LP relaxation bounds for our two formulations to explain their
behavior in regards to different problem sizes. Some brain re-
gions were too large for any formulation to achieve optimality
due to the fact that KCT is a NP-hard problem. However,
our heuristic method, which produced high-quality results to
optimal solutions in small and medium size problems, scaled
very well for the large instances with a running time several
magnitudes of order faster than the MIP models.

Identification of local connectivity strengths and config-
urations could provide a noninvasive biomarker for brain
health, and aid in the assessment of neuroprotective strategies.
The computational methods presented in this paper can be
considered as a necessary first step to develop useful tools
for system neuroimaging that can be employed and tested
a novel biomarker of cognitive decline for those who are at
risk of developing MCI and AD. These tools will also enable
the methodical uncovering of abnormal alterations in brain
function and bring fresh insight into mechanisms of brain
diseases. This will eventually lead to targeted therapeutics,
including cognitive enhancers and protective brain agents,
identify transition stages between normal brain aging to cog-
nitive impairment and perhaps evaluate functional networks of
cognitive phenotypes associated with MCI and AD.
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