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On the Analysis of Sequential Data in

Life-Span Developmental Research

One of the common goals in research on the life-span development of psycho-
logical constructs is description of the changes that are correlated with
chronological age. Descriptive research on age-associated changes is often seen
as a necessary first step toward explanatory analysis - after all, it is only
reasonable to argue that one should demonstrate the existence of an age-related
phenomenon prior to any concerted effort to account for its origins.

As is by now well known, there are major potential problems with descriptive
research based upon simple "developmental" designs, such as the cross-sectional
or single cohort longitudinal designs, in the form of rival interpretations to
chronological age as the primary correlate (Schaie, 1965, 1977). 1Indeed, a vast
literature on life-span developmental methodology has grown out of the realization
that the methodological problems in descriptive inference in life-span development
are often made difficult by a host of potential internal validity threats (e.g.,
Baltes & Nesselroade, 1979; Nesselroade & Reese, 1973). Schaie's (1965) general
developmental modél, which advocated the use of expanded sequential sampling,
promoted the expansion of simple cross-sectional and longitudinal designs into
sequential sampling designs (see also Baltes, Reese, & Nesselroade, 1977;

Schaie & Hertzog, 1982)as a way of unconfounding the primary rival factors,
cohort and period effects, from age effects.

Currently there is a great deal of controversy about the validity and utility
of the design and analysis procedures advocated by Schaie, and about the validity
of empirical research reports which have used these methods to study adult
intellectual development (e.g., Adam, 1978; Baltes & Schaie, 1976; Botwinick &

Arenberg, 1976; Donaldson, 1979; Horn & Donaldson, 1976; Schaie, 1979). Most of
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the methodological criticism has not questioned the usefulness of sequential
sampling, i.e., the collection of data in cross-sectional or longitudinal
sequences (Baltes et al., 1977). The papers have instead criticized Schaie's
(1965) three bifactorial sequential designs and his methods of data analysis.
Some of the strongest criticism may be found in the papers by Donaldson (1979)
and Horn and McArdle (1980). These authors reject the validity of the parametric
assumptions of Schaie's bifactorial designs and strongly criticize the use of
traditional ANOVA to test hypotheses about mean differences in sequential data.
They advocate instead the use of methods developed initially by Mason, Mason,
Winsborough, ané Poole (1973), which simultaneously estimate the effects of all
three factors -- age, period, and cohort -- using the general linear model to
estimate fitted éonstants representing mean differences among the levels of each
factor (see also George, Siegler, & Okun, 1981).

In our view, the approach advocated by these authors represent a major contri-
bution to the literature on ;equential methodology, particularly in statistical
treatment of sequential data. In particular, Horn and McArdle's modeling mean
and covariance structures to estimate the age, cohort, and period effects from
longitudinal sequences represents a significant methodological advance. However,
it is also our view that these and other papers advocating the Mason et al.
approach overstate the case against Schaie's bifactorial models and for the
alternative designs. In doing so, they have inadvertently Qbscured the major
issues. The purpose of this paper, ;hen, is to present our somewhat different
perspective on the problem hoping, thereby, to contribute to a dialogue on the
appropriate methods for the analysis of sequential data.

To discuss the problem of sequential analysis, it is necessary to distinguish

between the parametric model of the design and the statistical method of estimating
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the parameters. The parametric model specifies whether there is an effect
associated with a given level of the age, cohort, or period factor. Given a
parametric model in which each of the parameters is uniquely identified, one may
then proceed to obtain statistical estimates of the parameters.

To facilitate the comparison of the different parametric models, consider
firstva univariate linear model for a cross-sectional sequence in which j ages,
k cohorts, and m periods are measured (we will have more to say about the exact

form of the sequential data matrix below):

(1)

= u+0tj + Bk Yt (aB)jk + (ay) jm + (BY)km + (aBY)jkm + eijkm

Y
ijkm

Equation (1) indicates that in some population of individuals, the individual

scores, are potentially a function of the main effects and interactions

Yijkm’
of age, cohort, and period factors, where aj are the effects of age, Bk are the
effects of cohort, Ym are the effects of time, interactions are given using
parenthetical notation (e.é., (O.B)jk are interactions of age and cohort effects),
and eijkm are individual error scores. The well-known problem, of course, is the
linear dependency among chronological age (A), cohort birth year (C), and time
period (T), such that T = A + C (e.g., if you were born in 1900 and it is now
1981, you must be 81 years of age). This linear dependency limits our ability

to estimate the effects given in Equation (1l). That is, even thouéh all the
effects given are theoreticaliy and concep£uaily distinct, and even though in
principle all effects could be prqéent for some dependent variables in certain
populations, the linear dependency removes the possibility of‘estimating all
effects in the analy;is. All three-way interaction effects are non-estimable.
Other effects are estimable, but only if certain other effects associated with
the same cells in the sequential data matrix are assumed null. In other words,

we must exclude certain types of effects from the model on theoretical grounds

before the remaining effects are estimable.
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Schaie's (1965) solution to the problem was to assume that all effects
associated with one factor in the model were null. The cross-sequential design
hypothesizes cohort and period effects, assuming all age main effects and
interactions are nonexistent; the cohort-sequential design hypothesizes age
and cohort effects, assuming all period effects to be null, etc. A model for

the cohort-sequential design, then, is:

= u+ocj + Bk + (ocB)jk + (2)

Y. . s
ijkm e1ka
This approach has been criticized by Donaldson (1979) and Horn and McArdle
(1980), who argue that it is rarely, if ever, the case that all effects associated
with one of the factors will be null. They offer instead an approach we call

the Additive Effects model. It assumes (i) all interaction effects are null so

that the general model is of the form

= u+aj + Bk + ym + €ijkm (3)

¥ 5km
and (ii) at least one additional effect is null, such that an assumption of the

form o = may be placed on the main effects. This latter assumption breaks

%
the linear dependency in the main effects, and all remaining effects for age,
dohort, and period are then estimable. (except for scaling constraints; see

below). The parameter estimates from the Additive Effects model are, therefore,
valid only if both types of assumptionf are satisfied.

Our objection to the Additive‘Effects model is only that, as a parametric
model, it is in principle no better than Schaie's bifactorial models: if the
assumptions of any of those models are incorrect, then the resultant parameter
estimates_are invalid. 1Its proponents are quite specific about the need for
an accurate assumption about nullity of one or more main effects, and the potential

problems if those assumptions are violated: models with differing as§umptions

of the second type produce estimates for the remaining parameters that often vary
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considerably between different models (Glenn, 1981; Horn & McArdle, 1980).
However, tﬁey ignore the problematic nature of the additivity assumption, which
has been criticized by others (e.g., Glenn, 1976). Simply put, one could turn
the tables and argue that the assumption of additivity will rarely, if ever,
hold for developmental phenomena. ‘One reason for this argument is that age-~
correlated érends do not necessarily imply organismic development in its
strongest sense; we might well expect age trends in many psychological constructs
to vary over time, given secular trends and generational differences in nutrition,
health maintenance behavior, education, life style, etc.

Put in perspective, then, the Additive Effects model is a contribution
to the area because it provides another model to consider in a theoretical
evaluation of psychological phenomena. If we believe, a priori, that the effects
of age, period, and cohort exist but are completely additive, then the Additive
Effects model is obviously most appropriate. If, on the other hand, we believe
a priori that there are no effects associated with time period, then a cohort-
sequential model is most appropriate. The essential problem is, of course, that
we often do not know in advance which, if any, model is "true" -- usually because
not enough is known about the constructs of interest, but especially because
previously collected data is never model-free. An obvious goal for any develop-
mental theory is a specific model for the nature and influences of the age,
period, and cohort variables. However, aséumptions based upon a well known
hypothesis or theory often represent a parametric interpretation of previous
data. This certainly appéars to be the case for the fluid/crystallized theory,
which developed as ah age effects interpretation of differential patterns in
cross-sectional age differences.

We cannot validate a theory about age, cohort, and period effects for a given

set of developmental constructs merely by showing that descriptive effects
estimated for a parametric model may be replicated, since all that is shown is

that the phenomena are consistent. To be blunt, our model may simply be, -
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consistently invalid. Similarly, we cannot validate a theory by analyzing a
different sequential data matrix by building in assumptions which are a simple
restatement of the old interpretation. In this sense, the Mason type approach
cannot hope to discover the "true" model. We agree with Glenn (1981), who argues
that the age/period/cohort analysis can only be evaluated on the basis of infor-
mation outside the sequential data matrix. Thus, we cannot agree with the position
of George et al. (1981) that the Additive Effects model with additional assumptions
can discover the effects that are present in the data. Their analysis is dependent
upon the validity of the ;dditional assumptions, and the special characteristics
of their simulated éata. Certainly, one of the major contributions of the
critiques of Schaie's model may be that we are forced to assess more precisely
the theoretical validity of our parametric assumptions, and to inquire after ways
in which our models may be falsified at explanatory levels other than the
descriptive age, cohort, and period analyses discussed here.

While we take.éxceptioh to the claims made on behalf of the parametric model
for the Additive Effects approach, we believe that the methods of analysis used
by proponents of that approach represent a significant advance over the ANOVA
methods originally advocated by Schaie. That is, the use of the general linear
model to estimate the actual effects under given model assumptions is undoubtedly
superior to using omnibus ANOVA F-tests for a given class of effects (e.qg.,
testing the nuli hypothesis that all age effects are equal to zero). Estimating
the effects themselves is superior, becasue (a) one does not need to do post-hoc
analysis on the untransformed marginal means to isolate the source of significant
differences, and (b) one should hot inspect marginal means, but rather effect
estimates that are conditional on the parameteric assumptions used to produce
estimabili;y. Donaldson (1979) was quite clear ahd, we believe, quite accurate

on this point.
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Note, however, that these analysis methods may also be applied to models
using the parametric assumptions of Schaie's bifactorial designs. Thus, one
should not use advances in statistical estimation procedures as a criterion for
evaluating the validity of parametric assumptions. For example, Schaie and
Hertzog (Note 1) used multivariate regression with orthogonal polynomials for
age trends to do exploratory analysis of sequential data using the cohort-
sequential design (analyzing both cross-sectional and longitudinal sequences).
Polynomial effect estimates were tested as planned comparisons, and the results
were reported and evaluated in terms of the estimated polynomial effects, rather
than a visual inspection of the observed means. If the parametric assumptions
of the cohort-sequential design were in fact true for these data, then this
approach to the data analysis, while not isomorphic with the single cell effect
estimates obtained from a Mason type dummy regression analysis, would be perfectly
appropriate and interpretable.

Use of the general linéar model has another important advantage, however
(regardless of whether single cell effects or larger contrasts such as the ortho-
gonal polynomials are estimated). Perhaps the major advantage for life-span
developmental research is that i£ leads us away from thinking in terms of balanced
ANOVA designs when designing studies, and towards thinking in terms of unbalanced,
incomplete factorial designs in which one is concerned with the estimability of
effects, rather than whether or not one hasAcomPletely crossed factorials.

Breaking the "mind set" of traditiéﬁal ANOVA designs is useful, for one reason
because it allows for a solution to the problem of estimating age effects in
sequential sampling ﬁatrices which would no:mally be considered only amenable
to a crosgrsequential (cohort by period) design.l We certainly agree with the
previous complaints (e.g., Adam, 1978; Botwinick & Arenberg, 1976) that use of
cross-sequential designs to make inferences about age effects is a hazardous

and probably invalid endeavor. It also avoids one of the major problems of the -


Hiroko


cohort-sequential method, which is that collection of data for a completely
crossed cohort-sequential design requires a large number of time periods --
unacceptably long for much work on aault development. Schaie and Hertzog (Note 1),
desiring to apply a cohort-sequential approach, addressed this problem by taking
data from longitudinal and cross-sectional sequences, partitioning them into
multiple cohort-sequential data sets, and then performing separate multivariate
regression analyses on each databset. The advantage of an alternative strategy

of using the general linear model approach and including the entire data matrix

(as an incomplete design in ANOVA logid) is that the parameter estimates are
calculated simultaneously in a single analysis. The critical point, however,

is that such an analysis need not be performed under the parametric assumptions

of the Additive Effects model. One could use cohort-sequential assumptions, or
some hybrid set of assumptions that may be justified a priori so long as these
assumptions provide theoretically meaningful and statistically estimable parameters.
In our view, then, the major contribution of the Donaldson and other critiques

may not be the promotion of the Additive Effects model (particularly if this leads
to blind application of such an approach by unsophisticated users), but rather

the movement away from the logic of fully crossed ANOVA designs toward theory-
based specifications of parametric assumptions.

Full consideration of the issues raised above is not possible in the present
forum. What we hope to do in the remainder of this paper is to demonstrate an
empirical application of the Additive Effects model to the data collected by
Schaie and colleagues and analyzed previously by Schaie and Hertzog (Note 1)
using the cohort-sequential approach. We have two specific goals: (a) a test
of the hypothesis that a violation of the cohort-sequential assumptions, in the
form of aéditive effects for period, may have biased the results. In particular,
we are interested in whether aﬁ Additive Effects model would lead to substantively

different conclusions regarding age changes and cohort differences than the


Hiroko


cohort-sequential analysis; and (b) we wish to demonstrate empirically the
problem 6f indeterminacy in the use of Additive Effects ﬁodels under different
parametric assumptions of the second type (e.g., two age effects equal). To
anticipate, when the Additive Effects approach is used without strong theoretical
justification for a given assumption,‘then multiple analysis using widely
different ;ssumptions is probably appropriate, only in the sense that one can
then determine the degree of change in the parameter estimates under different
enabling assumptions. As we shall see, this is often less than satisfactory,
however, because the resulting parameter estimates can vary considerably.

Method

The data analyzed in this report consiét of psychometric test scores on
Thurstone's 1948 Primary Mental Abilities (PMA)test, collected on a sample of
adult members of a Health maintenance organization in the greater Seattle area
(Schaie, 1979). The samples consisted of two separate longitudinal sequences,
tested over three seven-yeaf periods (1956, 1963, 1970; and 1973, 1970, & 1977).
The data from eight seven-year birth cohorts, each measured at three occasions,
enabled us to examine effects for eight birth cohorts (mean birthryears 1889 to
1938), four time periods (1956, 1963, 1970, and 1977) and nine age levels (mean
ages 20 to 81). Table 1 reports the cell frequencies of the data for these
longitudinal sequences.

For the purposes of this report, we'used only the composite measure of
general intelligence (IQ) from the PMA, calculated as a weighted composite of
the five PMS subtests (see Schaie, 1979, for a detailed description of the
individual subtests and for the formula for calculating the composite IQ
variable). IQ was selected to T-scores (mean = 50, s.d. = 10).

In ;rder to estimateithe coefficients for the Additive Effects models,
we used the LISREL IV program to specify a series of models fitting the mean

structure of the observations for the 14 age/cohort groups reported in Table 1
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(collapsing over Sex). This method, described by Horn and McArdle (1980) in

their RAM notation, involves fitting constants to the mean structure, while
leaving the covariance structure of the variables unconstrained. The approach,
therefore, has the advantage of not making the usual assumptions of traditional
MANOVA applications that the covariance matrices of the groups are equal in

the population. In order to use the Horn and McArdle approach, it is necessary

to establish a matrix of dummy coefficients in LISREL's Ay matrix, and then

model the age, period,.and cohort effects as regression coefficients in LISREL's g
matrix.2 Identification is achieved by constraining the appropriate coefficients
to equivalence across different groups. Thus, groups 1, 2, 3, and 4 all contain
subjects who have a mean age of 32 at some point in time. Identification of one

of the regression coefficients as being the “"age 32" parameter is achieved by con-
straining one of the coefficients for each of these groups to be equal over all

the groups (constrained parameters in LISREL terminology). The coefficients for
one age, one period, and one cohort must be fixed at O to resolve the scaling
indeterminacy. This procedure defines the remaining effects as deviation contrasts
from the age, period, or cohort with a fixed zero effect. The logic is essentially
the same as that for the assignment of 1's and 0's to dummy coding vectors in
usual multiple regression applications of the Mason et al. approach.

We estimated a series of models under Additive Effects assumptions that
there were no interactions present in the population. There were essentially
three types of models: (a) models.which placed just one restriction on the age,
period, and cohort effects, achieving a just-identified solution for the remaining
parameters. We estimated a series of such models with widely varying assumptions
(some that were plausible to us, others that were implausible) in order to examine
variations in effect estimates; (b) models with more than a single restriction on
the age, cohort, and period effects, based in large part upon modifications of

models of the first type; and (c) models which hypothesized that a whole class
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of parameters (e.g., all age effects, all cohort effects, or all effects were
equal to zero). fhese restricted models were used to calculate likelihood
ratio x2 statistics testing the null hypothesis of the form: all cohort effects
are zero, conditional on the existence of all age and period effects, etc.
This approach was used by Horn and McArdle (1980) to evaluate whether reduced
rank model for the additive effects could successfully account for the data.
Tt is logically equivalent to the approach advocated by George et al. (1981)
as a method for using the Additive Effects model for exploratory purposes,
although they used more tradition&l multiple regression methods to solve the

problem.

RESULTS AND DISCUSSION

In order to facilitate discussion of the Additive Effects models
and the rationale for érguing for or against certain assumptions, we
provide a graphic representation of the observed means for IQ for all
fourteen groups in Figure 1. Table 2 also provides the cohort-sequential
F-tests and coefficients for the seven fourteen-year age ranges spanned
by independent groups of subjects. As can be seen from Table 2, the main
results of the cohort-sequential analysis were as follows: there was
significant age decrement over the 46-60 age interval and beyond; (ii)
cohort differences were statist&cally reliable only between the 1938 and
1931 cohorts;3 and (iii) there were reliable Cohort x Age interactions,
involving interaction with the quadratic age trend, in several data sets.
We should note that these data, which include information from a 1977
testing not previously published, tend to indicate statistically reliable

decrement earlier in the life-span than did earlier analyses from the

Seattle study (Schaie and Hertzog, Note 1).
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Table 3 reports the results from a series of Additive Effects Models
that are just-identified in the age, cohort, and period parameters (Models
I through IX). The goodness of fit test is not significant (x2 = 27.16
with 24 df, p = .30), indicating that the assumption of additivity cannot
be rejected.4 The results from these just-identified models are relatively
discrepant. Models I-III place different restrictions on pairs of cohort
groups. Model I constrains the two oldest cohorts, C1 and C2, tb be equal.
This assumption does not appear to be problematic if one merely inspects
the date in Figure 1, which shows the two cohorts to be nearly overlapping.
However, this assumption results in benign estimates of age change (note
the increment until age 60, followed by modest decrement) relative to the
observed slopes in Figure 1. It appears that much of the putative decline
has been absorbed into negative (monotonically decreasing) period effects.
On the other hand, equality constraints on Cohort 5 and Cohort 6, which
appear to be quite different in the observed means, has an opposite effect:
large, early declines with age and cohort and period effects in the opposite
direction!

The age constraints were selected to represent a variety of guesses as
to the age of initial onset of decline in IQ performance. A proponent of the
"early decrement" hypothesis might assume that the best guess is the most
conservative -- assume no decline between the youngest two ages and set age
25 and 32 equal. Model IV, which does this, finds large scale decrement
beginning with the parameter for age 39, and achieving a fully two standard
deviation decline by age 81. The problem with this assumption, however, is
that the observed data show the opposite pattern -- increment from age 25 to
32 that is consistent across the two cohorts (see Figure 1l). Thus the

assumption that there is no age-related change from age 25 to age 32 forces

the model to account for the increment in terms of large positive period effects.
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Note, that the assumption that age 32 = age 39, represented in Model V,
does not produce the large positive period effects, nor does it produce
the same magnitude of decline. Similar results are obtained in Model VI,
which assumes age 39 = age 46, and a still more benign picture of age
changes emerges (as might be expected) when the equality constraint is
placed upon ages 46 and 53. As was the case for the cohort parameter
constraints, Models VIII and IX, which place different equality constraints
on period effects, arrive at dramatically different results.

Quite obviously, one has a wide variety of assumptions and outcomes
to choose from in these models. Let us reiterate Glenn's (1976) point:
there is no purely statistical solution to the problem. Given the relative(!)
consistency of the results under the age assumptions, we might elect to adopt

the assumption that a , given the implausibility of the a = a

32 - 239 25 32

assumption'when compared against the observed means in Figure 1. Note
_however, that Model V actually shows an increase between ages 39 and 46.

Given a decremental conceptualization, we might require that this difference

be no greater than zero. Model X shows the results obtained when assuming
stability in age-correlated trends from age 32 through age 46. This additional
constraint does not affect the parameter estimates, nor does it cause an
appreciable reduction in the fit of thg model (X2 = 27.22 with 25 4f; change

in x° <1).

Model XI imposes an additio;al change; it hypothesizes that all time
period effects are null in the population. This model modification derives
from the fact th;t the period effects are not reliably different from zero in
Model ¥, given their standard errors. Model XI does produce a significant re-
duction in fit (X2 = 51.49 with 28 4f, p <.01; change in X2 = 14.27 with 3 d4f,

p <.001). Even though the period effects are not reliably different from zero,

they are needed to achieve a level of fit equal to the just~identified models.
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At this point we might end the process and decide to accept Model X.
We note, somewhat disingeniously, that Model X just so happens to be highly
consistent with the cohort-sequential results reported in Table 2. Are we
arguing parsimoniously in rejecting the other solutions, or are we simply
"validating” our own perceptions of reality? Would the logical status of
our hypothetical acceptance of Model X truly be any better if we had pre-
viously pronounced and adopted some face valid theoretical argument justi-
fying the assumption that age 32 = age 392

The conundrum is brought even more clearly into (or, possibly, out of)
focus when we attempt to use the restricted modeling approach as advocated
by George, Siegler, and Okun (1981). Models XII, XIII, and XIV each assume
the absence of all effects associated with one factor; age, period, or
cohort. We are then in a position to evaluate the goodness of fit to de-~
termine whether cohort,.age, or period effects should be truly considered
null. Table 4 reports the parameter estimates and the goodness of fit
statistics for these models. Although we might expect that all of the effects
would be significant (recall that there were Cohort x Age interactions in the
cohort sequential analysis), in fact, a parsimonious result emerges that is
completely inconsistent with Model X; Model XIV, which constrains all cochort
effects to equal zero, fits the data well! Moreover, the pattern of effects
coincides nicely with discussions of these types of data by Botwinick (1977);
that is, there are large age declines (beéause of the "mistaken" assumption of
non-zero cohort effects) and large, positive period effects. Reasoning in a
post-hoc fashion, we could afgue that these are not true period effects (which
we probkably could not explain) but rather confounded practice effects in a
longitudinal data set. We might argue, then (especially if we were predisposed

to accept a decremental view of life-span intellectual development), that this

most parsimonious model, fitting the data equivalently with fewest parameters.)
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and consistent with the large body of cross-sectional data, is the true
model.

The appeal to parsimony, however, is problematic if we examine closely
the nature of the relationship between age and cohort effects in this range
of birth years. Since cohort effects are essentially monotonically decreas-
ing, and since period effects are (at least under Model XIV) monotonically
increasing over time, it is all-too easy to absorb the cohort effects into
the other effects with a simple linear tradeoff. Glenn (1981) has a recent
and compelling demonstration of this problem, and he points out that when
the effects are all linear, the most parsimonious model may not in fact be
correct (see also Adam, 1978).

Thus we have come face to face with the fundamental indeterminacy of
exploratory analysis using Additive Effects or other models on sequential
data. Scientists with d;fferent points of view could analyze the same data
and come to radically different conclusions. As noted by Glenn (1981), the
only way to determine the validity of an age/cohort/period model is to
attempt to go outside the data matrix, either by collecting new data with
which the model is inconsistent, or by (preferably) theoretical consideration
of the meaning of the assumptions involved, determining consequent premises,
and then proceeding to test these premises. The latter approach rather
quickly leads us away from descriptive research toward explanatory research.
As Mason et al. (1973) noted, much of the problem derives from the logical
status of the age, period, and cohort variables. if it is possible to re-
place them with process-oriented variables which measure the process by which
the cobhort effects (etc.) came to be manifested, then the linear dependency
broken. More important, our understanding of the phenomenon is likely to
increase. A prime candidate in this regard would be replacement of arbitrary

birth cohorts qualitatively with theoretically-meaningful cohort distinctions
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(Rosow, 1978; Schaie, 1983).

With respect to descriptive examination of data, Glenn (1981) has
pointed out that the best procedure is to collect additional data from
subsequent time periods to observe whether a model's parametric
assumption seem to hold up under closer and continued scrutiny. A
critical point reducing the uncertainty would be the presence of non-
linear trends in the effects of one or more of the variables. For
example, a reversal of the direction of cohort effects in the population
(recent cohorts performing more poorly than earlier cohorts) would be
useful because the effects could not be so easily “reabsorbed" from one
set of effects to the other. In fact, given recent patterns in reading
scores and other school tests, we might well expect such a reversal.

Indeed, cross-sectional sequence data from Schaie's projects shows that
Cohort 9 (mean birth year 1945) performed significantly poorer than Cohort
8. This suggests that analysis of the cross-sectional sequences to
determine consistency with the age pattern of the divergent models would

be useful. The problem, however, is that any reanalysis would also be
subject to the indeterminancy problem; furthermore, we would expect a
priori that cross-sectional sequences would be subject to different types of
additional internal validity confounds than the longitudinal sequences.

Thus there is sufficient room fo; intellectually honest investigators to
come to radically different, yet defensible conclusions from the same

data -- a problem that has plagued age-comparative factor analysis for years
(e.g., Reinert, 1950).

We therefore must inevitably return to the point made earlier: only if
there exists a strong theory to be used as the basis for the parametric
assumptions needed for age/period/cohort analysis can we have any confidence

in the resulting outcomes. Perhaps the problems inherent in valid


Hiroko


17

descriptive inference from sequential data will lead us to reconsideration
of the theoretical status of concepts in life-span developmental psychology,
and a more careful consideration of the criteria by which strong inference
about competing predictions from developmental theories may be evaluated.

If we are in the process led away from descriptive research on mean

differences in cross-sectional or sequential data matrices, so much the better.
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Footnotes

lThere are, héwever, conceptual problems with age-oriented analyses
based upon decomposition of replicated cross-sectional samples over just
two time periods. The data matrix will be dominated, so to speak, by
the betweeﬂ subjects age differences, and an Additive Effects model may

be particularly prone to mistaken inference given a misspecified model.

2This specification is highly complex, and cannot adequately be
described here. We thank Jack McArdle for his help in translating the
Horn/McArdle RAM model into a LISREL IV specification. Individuals
interested in seeing the LISREL specification should contact C. Hertzog

personally.

3There were, however, trends for differences between other pairs of
adjacent birth cohorts. BAnalyses of the cross-sectional sequences, which
had larger N, detected a greater number significant cohort differences

than were found in the longitudinal sequences.

4The collection of extended sequential data over more than three
times of measurement creates surplus degrees of freedom for certain cells
in the matrix. Absolute x2 can then be used to see if any model just
identified in the age, period, and cohor£ effects fits the means. If
not, then the hypothesis of additivity is rejected. However, if it canﬁot
be rejected, it should not be a;sumed true, since in theory an equivalent
reduced rank model with interaction effects must exist. One could,
however, investigate whether any theoretically plausible model with
interaction fits the data as well. 1In general, however, likelihood ratio
x2 testing of restricted models is not an "objective" statistical

method for evaluating the"truth"of parametric models, given the conditional

nature of the hypothesis tests.
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5Note that previous analyses using ANOVA on these data have

generally found little evidence for practice effects (e.g., Schaie,
1972). However, since these analyses did not use the Additive Effects
approach, one could still argue that practice effects did exist but

were observed by other countervailing influences.
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TABLE 1

DESCRIPTION OF DATA
FROM LONGITUDINAL SEQUENCES

DATA Cohiort Age Males Females Total
SET (mean birth year) (mean age)

I 1938 : 25,32,39 8 14 22
1931 25,32,39 10 11 21
II 1931 32,39,46 14 27 41
1924 32,39,46 11 15 26
III 1924 39,46,53 - 23 28 51
1917 39,46,53 11 15 26
Iv 1917 46,53,60 25 26 51
1910 46,53,60 17 15 32
v 1910 ° 53,60,67 17 31 48
1903 53,60,67 13 15 28
Vi 1903 60,67,74 8 10 18
1896 60,67,74 3 12 15
VII 1896 ’ 67,74,81 8 12 20

1889* 67,74,81 8 6 14
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TABLE 2

COHORT-SEQUENTIAL RESULTS:

AND F-~RATIOS

EFFECT CONTRASTS

25

Source Static Data Set (see Table 1)
I II III v v VIV VII
%* k% * *k % * % % * % %
Age (Linear) F 28.55 1.65 1.69 6.73 27.49 29.23 42,33
C 2.54'} 0.68 | -0.56 -1.07 -2.59 | -3.73 -7.71
* %* % % % %
Age (Quadratic) F 6.81 o<1 8.43 <1l 12.13 3.85 3.29
C -3.47 [-0.50 -1.73 -0.08 -2.70 -1.67 -2,00
, *
Cohort F o 6.11 | <1 <1 3.03 | <1 2.02 | <1
C -4,97 |-0.20 -1.07 2.63 0.47 -4.07 1.17
Cohort x Age (Linear) F 2.23 <1 <1l <1 <1l <1 <1l
C - - - - - - -
: * * *k *
Cohort x Age (Quadratic) F <1 6.06 5,96 1.51 7.84 5,25 <1
e - - - - - - -

Abbreviations:

Note:

F=ANOVA F-Test; C-effect contrast.

For data set descriptions, see Table 1.
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