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INTRODUCTION

A major issue in the study of adult intellectual development has been
whether the factor structure of intelligence remains qualitatively invariant
with advancing age. Age-related invariance in factor structures would
provide evidence that the observed or manifest variables, the psychometric
tests, are measuring the same latent intellectual factors at different ages;
indeed, Baltes and Nesselroade (1970, 1973) arqued that a demonstration of
structural invariance is necessary before quantitative age changes in mean
performance levels can be interpreted unambiguously.

Garrett (1946), Anastasi (1970) and others have interpreted factor analytic
results as indicating evidence for dedifferentiation of the intellectual factor
structure from young adulthood to senescence (see Reinert, 1970). Dedifferentiation
in its most extreme form implies a qualitative change in the underlying
factor space, even to the.point of suggesting a fewer number of common factors
in older subject's data due to collapsing hyperplanes, eventually leading to
a single intelligence factor (G?) accounting for all observed variables' common
variance. Evidence for the dedifferentiation hypothesis exists, although the
studies supporting the hypothesis have usually found only é trend towards
a collapsing factor space; however, the studies favoring dedifferentiation
can be countered by studies supporting an invariance hypothesis (e.g., Riegel
& Reigel, 1962). Much of the conéradictory evidence may be due to differing
factor analytic techniques and criteria for invariance (Cunningham, 1978;
Reinert, 1970). |

A theoretical paper by Meredith (1964) bears directly upon the issue of
appropriate criteria for assessing group differences in factor structure.
Specifically, Meredith (1964) used Lawley's seTection theorem to show that,

if a factor analysis model holds for a given population, then selection of
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subgroups from that population should stil1l yield an invariant factor
pattern matrix of raw score regressions of manifest variables on factors.
However, the covariance matrices of manifest variables, unique components,
and factors would not generally be equivalent across groups. Meredith's
(1964) paper is important with respect to the dedifferentiation hypothesis
because 1) it suggests that age differences in standardized factor loadings
or in factor covariance matrices would be expected by age selection alone,
and cannot be taken as evidence of qualitative age differences, and 2) only
variation in the raw score factor pattern matrix constitutes evidence of
qualitative age differences in factor structure (Mulaik, 1972).

Recent advances in restricted maximum likelihood factor analysis
techniques by Jdreskog and coworkers (e.g. Joreskog, 1969, 1971; Sérbom
& Joreskog, 1976) are direct]y applicable to the problem of testing hypotheses
of structural invariance in multiple groups (see Bechtoldt, 1974; McGaw &
Jéreskog, 1971). These methods are also extremely useful in testing hypotheses
of interindividual stability inlongitudinal factor analysis models (e.g.,
Joreskog and Sérbom, 1977). These methods are generally preferable to,other
longitudinal factor analysis models (e.g., Corballis and Traub, 1970) precisely
because they directly estimate raw score regressions of manifest variables
on factors and the factor covariance matrix (as opposed to the factor correlation
matrix), thus enabling separate tests of 1) cross-occasion invariance in
factor loadings, 2) cross-occasion changes in magnitude of individual differences
(reflected in factor variances), and 3) cross-occasion stability in interin-
dividual differences (reflected in factor covariances). The factor analysis
models of J&reskog and Sérbom (1977) are also particularly suited for longi-

tudinal analysis because they allow for nonzero covariances between unique
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and covariance between identical measures over occasions is likely in longi-
tudinal data (S6érbom, 1975). Omission of these autocorrelated residuals
would perturb the estimated factor loading and factor covariances.
The present study used the longitudinal models of J¥reskog and

Sérbom (1977) to test hypotheses of between-group and cross-occasion invariance
of factor pattern, factor covariance, and unique covariance matrices in two

longitudinal sequences from Schaie's Seattle study.
METHOD

Factor Analysis Model

A1l models were estimated from the following general factor analysis
model (Sérbom & Jbreskog, 1976): Given a px1 vector of observed variables x
in group g, with mean vector Bg and covariance matrix §g, then a factor analysis
model with a k x 1 vector of common factors fg and a p x 1 vector of unique

factors zg is

X.=v +Af =2z, (1)

where vg is a p x 1 vector of grand means and Ag is a p x k matrix of raw
score regressions of xg on fg. Then the factor means, a k x 1 vector eg

relates to ug by

=y +16
Y9 Y97 Zgig (2)

The structural model 1is
I =Ad A +Y
~g ~g.g-9 -g (3)

where & is the covariance matrix of fg and ¥ is thecovariance of matrix zg'

Parameters in eg’Ag’°g and Wg are fixed, free, or constrained to

equal other unknown parameters (fg and zg are not estimated). Provided that

the investigator has specified a unique model by constraining of fixing

parameters, the COFAMM program (S6rbom and JBreskog, 1976) will estimate all
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unknown parameters and their standard errors of estimate, while also providing
a x2 goodness of fit test for the fit of the estimated Zg» ?ég to §g .
the sample covariance matrix. Fitting of ?g to §g is accomplished by
minimizing a fitting function with respect to all unknownparameters (which
is equivalent to maximizing a log likelihood function). The x2 goodness
of fit statistic may be used to compare improvement in fit from a parent
model to a less restricted counterpart (i.e., one with additional free parameters),
by evaluating the difference in corresponding x? statistics (Jéreskog 1971,

1974).3

COFAMM also provides the first derivatives of all fixed and constrained
parameters, wich may be used to identify parameters which fit the data poorly
(S8rbom, 1975).

Data from two 14 year longitudinal samples were used in the present
report. The first sample consisted of 162 men and women from seven 7-year
birth cohorts, tested on three occasions (1956, 1963, 1970). The second
sample, consisted of 250 men and women from 7-year birth cohorts, also tested
on three occasions (1963, 1970, 1977). Longitudinal factor analyses were
performed on each sample, ignoring the cohort and sex classifications. In
addition, the two samples were pooled to form a larger sample for simultaneous
multiple group analysis. Three groups were formed by combining across samples
for matched age intervals (see Table 1). The data matrix does not permit
unambiguous interpretation with respect to age, cohort, and time effects
(although the effects are not completely confounded), but this was deemed
necessary in order to increase sample sizes enough to justify large sample
assumptions in the factor analysis.

Variables

The variables were the five subtests of Thurstone's 1949 version of

the Primary Mental Abilities intelligence battery: Verbal Meaning (V), a
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test of recognition vocabulary; space (S), a test of figural discrimination
under two dimensional rotation; Reasoning, (R) a test of inductive reasoning
by letter series completion; Number (N), a test of speeded two column addition;
and word fluency (W), a test of speeded retrieval from semantic memory. There
were 15 dependent measures in the analyses, representing the five PMA subtests
at each of the three measurement occasions.
Models

Two basic models were estimated: 1) an occasion-specific model of the

type studied by J8reskog and Strbom (1977), and 2) a test-specific model.

The occasion-specific model fit a general (G) factor at each occasion in Q .

and left ¢ unconstrained. The selection of a G factor representation for the

5 subtests was indicated by an exploratory factor analysis of first occasion

data for 2200 subjects. The test-specific model fit 5 factors to the data,

one for each PMA subtest. Although the occasion-specific model is the pre-

ferred model, in thatitexplicitly models time-dependent changes among correspond-
ing parameters in é,? and ? , the test-specific model corresponds to the

one likely to be obtained in an exploration factor analysis, and the test-
specific 0 provides information about covariances among primary abilities.

The A matrices for the two basic models are shown in Figure 1.

RESULTS4

The procedure consisted of testing occasion-specific and test-specific
models in Sample 1, replicating the best-fitting models in Sample 2, and
testing multiple group models in the pooled sample.

Occasion-Specific Models p

The initial occasion-specific model in Sample 1, H] specified a G

factor with 5 free ) elements at each occasion, ¢ scaled to a correlation
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matrix by fixing G variances to unity, and a diagonal ¥ matrix of unique
variances. The model fit poorly (See Table 2), even though all parameters
estimated were large relative to their standard errors. However, offdiagonal
¢ elements exceeded unity. Perturbations due to autocorrelated unique com-
ponents were probably contributing to the poor fit, and H.2 allowed autocorrelated
residuals for all occasions, with a marked improvement jn fit (indeed, absolutex?
was no longer significant).
Two other models tested cross-occasion invariance in A . H was

identical to Fizbut constrained corresponding X elements to equivalence across
occasions. The factors were still standardized separately by fixing
diagonal \ elements to unity; H, therefore required the standardized regressions
of variableson G(G factor loadings) to be equivalent across occasions. An
alternative model, H“, defined the metric of G by fixing factér Tloadings of
R on G to unity and left f unconstrained; H, therefore constrains the unstandardized
G factor loadings to cross-occasion equivalence without allowing cross-
occasion differences in G factor variances to affect the hypothesis of cross-
occasion invariance in Q . The results from these models indicate H, to
fit better than H._3 (Table 2), but H, did not fit better than Hy. Model Hy
modeling cross-occasion invariance in unstandardized factor loadings, but
allowing cross-occasion variability in ? and f was therefore accepted as
the most reasonable model. Table 3 gives the parameters, standard errors,
and scaled solution values for the accepted model. G was defined primarily
by R and V, as can be seen from the residual variances and the scaled
factor loadings ( Q*)s; although all variables load appreciably on G, the
unique variances for S, N, and W are relatively large. There was little
change in G variance (diagonal ¢ elements) between the first two occasions,

but therewas a substantial increase in G variance between the second and third
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occasions. The off-diagonal elements in 9* show G to be highly stable across
occasions, implying stability in the distribution of individuals about the
G factor means.
The model specification for H4 was well replicated for Sample 2, for
although the absolute %% was significant, the fitting function value was
smaller than that achieved in Sample 1. 95% confidence intervals about the

parameter estimates for both samples overlapped in all cases.

Test-Specific Models

A test-specific model was computed for Sample 1 by specifying 1) 3 non-
zero elements in each of the k=5 columns of § , one for each replicated subtest
on its corresponding test-specific factor; 2) standardized oblique factors in
¢, with variances fixed to unity and freely estimated off-diagonal factor cor-
relations; and 3) v to be restricted to a diagonal matrix of 15 uncorrelated
unique variances. Results are given in Table 4. The model fit relatively well,
with large factor loadings and small unique variances, but the x? test was still
significant. The factors were highly correlated, particularly V and R.

The salient first derivatives were associated with residual covariances
in f. A sequential relaxation of fixed zero covariances (as recommended by
Sérbom, 1975) failed to improve fit to the level achieved by the occasion-specific
model unless non-significant parameters were allowed. Thus the occasion-specific
model achieves a level of fit with theoretically meaningful parameters which
cannot be approximated by the test-specific model.

In spite of this fact, the properties of the test-specific model were
of theoretical interest; hence the model was rep]icated for Sample 2. Again
excellent replication was obtained, with 95% confidence intervals overlapping
for all parameters. An interesting tendency in @ was that the correlation

between V and R was slightly lower, and the correlation between R and S was
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higher for Sample 2. However, the parameters were so similar to the previous

model they are not reported here.

Multiple Group Analyses

Analyses treating the two sequential samples as single groups had proved

useful in model building, and had indicated a high degree of longitudinal stability

in the data. Longitudinal stability was reflected in the occasion-specific
models as high cross-occasion correlation in G and in cross-occasion invariance
in G factor loadings; longitudinal stability was reflected in the test-specific
model as large and consistent loadings of variables on test-specific factors.

Stability in the single group analyses does not imply stability in all
subsamples, however. In particular, collapsing over the entire age/cobort range
may serve to obscure structural metamorphosis in the oldest age range, where the
number of subjects is smallest. The simultaneous sultiple groups analyses were
designed to address this issue.

An initial test of the equality of §g revealed significant group
differences (Box's M = 402.77; F = 1.59 (240,»), p <.0001). Thus group differ-

ences in some factor analytic parameters seemed probable.

Occasion-Specific Models. A sequence of occasion-specific models were

tested. The first model, H1’ required 1) both between-group and cross-occasion
invariance in G factor loadings; 2) an unrestricted ? matrix, with parameters
constrained to between-group invariance; and ‘3) a non-diagonal Y matrix of the
type estimated for H,2 in Sample 1, constrained to between group invariance. H,

is denoted:
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A sequence of models relaxed some of these restrictions. H2 relaxed the con-

straint of cross-occasion invariance in G factor loadings:
HZ: [.\g=’?g= ’\fg=;{.\#‘

The third model, H

s relaxed between-group constraints on ¢::

H.: A=, ¥q = A i % #

Hq relaxed the constraints on . y:

-~

H“: fg =5 A t o, ® o ¥q £ .

Hy relaxed all equivalence constraints:

H : Ay 7 gg 7, 2q i o, v, F .

5.

Finally, H, reimposed constraints on

=

-9

Table 5 gives the goodness of fit statistics for models Hy = He. In
general, results showed improvement in fit when ¢q and ¥g differed across groups.
but no improvement when constraints on A were relaxed. The most parsimonious
model therefore appeared to be H,, which allowed group differences in 2 and ?g
but fitted a single regression matrix of PMA subtests on G for all occasions and
groups. A1l free parameters were significantly non-zero (i.e., greater than
twice their standard error). Tables 6 and 7 give the parameter estimates and
scaled solution values.

The following important points can be seen in these results:

1) Parameters in A followed the previously observed pattern: G factor

loadings were largest for R and V1 and smaller for N1 w1 and S (in decreasing



Aging
N
order of magnitude).

2) Differences in ?g appeared to reflect group differences in G variance
(diagonal elements). G variance is smallest for the youngesf group (Group 1)
and largest for the oldest group (Group 3).

3) The pattern of cross-occasion changes in G variance differed be-
tween groups; there was some decrease in G variance in Group 1, relative stability
in Group 2 (albeit with some increase between the second and third occasions),
and a substantial increase in variability for Group 3 between the second and
third occasions.

4) The within-group stability in individual differences, as reflected
in covariance elements of Qg, was uniformly high; when ¢ was separately rescaled
to a correlation matrix for all groups the correlations exceeded .88 (Table 8).

5) The scaled unique variances in ¥g, shown in Table 7, show a general
tendency towards to decrease -from Group 1 to Group 3, indicating higher communal-
ities for Group 3.

A potential confound exists with regard to Group 3; namely, that it was
formed by pooling over a wider age/cohort range. This wider range may have
produced the larger variances in 0qe This hypothesis was tested by forming a
new Group 3, using only the 67 subjects in the two oldest cohorts. The G variances
were still reliably larger, but the cross-occasion increase in G variance was vir-
tually eliminated. Nevertheless, the greater variance in G for Group 3 could

not be due merely to its wider age/cohort range.

Test-specific Models. A similar sequence of test-specific models was

tested. The sequence was initiated by testing the hypothesis that all groups
had the same number of common factors, using separate unrestricted maximum Tike-
1ihood factor analysis on each group. Table 9 gives the goodness of fit tests.

As expected 5 factors were clearly indicated for Groups 1 and 2; 5 factors were

e e TN AR
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also indicated for Group 3, although the data were more equivocal.
The first restricted test-specific model required between-group equival-
ence in all matrices:

H.: ég=’?g=s\!g='

Subsequent models relaxed somecor all of these constraints, as for the occasion-
specific models. These models and their‘assdciated fits are shown in Table 10.
Model H,, allowing group differences in ?g and Yg, but forcing between-groups
invariance in Qg’ was the accepted model. The main parameters of interest here
were the elements of ?Q’ showing group differences in PMA factor variances and
covariances. Table 11 gives the scaled solution values, and Table 12 shows ?g
separately scaled as correlation matrices. The correlations among PMA factors
are relatively similar in Groups 1 and 2 (except for an increased correlation
between V and R). In Group 3, however, the factor correlations are uniformly
higher and all significantly non-zero. Given the high correlation between V and
R, a sixth model, H6 in Table 10, fitted 4 factors in Group 3, requiring V and

R subtests for form a single factor. The model did not fit as well as Hg; and

the hypothesis of only 4 common factors as specified in H was rejected.

Occasion-Specific Model with Factor Means. One of the chief advantages

of the occasion-specific model is that, the factor means, when estimated, re-

flect cross-occasion and between group differences in performance Tevel expressed
in terms of the factors rather than observed variables. An occasion-specific esti-
mating factor means in o_ was estimated, using Model He from the occasion-specific

-~

sequence (i.e., Hgt Ay = s Ay = ;¢gf ,WQ#L

A problem arisesin COFAMM applications to longitudinal factor means,
namely that the location parameters (grand means) in v are free to vary over

occasions, which implies that some of the longitudinal means differences will be

% R g £ A 1 N e e S e o e ks o A e N B AT 5 S b e e e s
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absorbed in v and not represented in 99‘ Fortunately, the observed means for
Group 2 showed little longitudinal variation; hence fixing 9, toa 3 x 1 vector
of zeroes (one group must have fixed zero elements in © to identify ?g; see
Sgrbom 1974) resulted in substantially invariant v across occasions. The para-
meter estimates and standard errors are given in Table 13, and the means are
graphed in Figure 2. The overall fit of the model was not as good as obtained
for Hg above, indicating that adding 99 had reduced the goodness of fit. The
differences in G means were substantial, conforming to expectations from Schaie's
previous analyses (Schaie, 1979). Group 1 performed at a higher level than
Groups 2 and 3, and showed increment from ages 30-44. Group 2 was forced to
stability (but the residuals indicated a good fit of the means). Group 3, on
the other hand, performed at much lower levels than Groups 1 and 2 and showed sub-
stantial decline in performance levels, particularly between the last two occasions.
The means for the redefinéd older group, Group 3* in Figure 2, further substantiated
the decline in performance level in old age. Note also the substantial level dif-
ferences between groups at the endpoints (e.g., Occasion 1 for Group 3, Occasion
3 for Group 2) where mean ages were virtually idenfical. This pattern is sug-

gestive of generational differences in performance level.
Discussion

The results of this study are not consistent with the hypothesis of sub-
stantive qualitative structural change in infe1Iigence over the adult life span;
to the contrary, the structure of intelligence in the models tested here shows
signs of relative stability. The major finding was invariance in the raw score
regressions of PMA variables on factors in Q' both across occasions and between
groups in the occasion-specific models, and between groups in the test-specific

models. The finding of between-group invariance in both G factor loadings in



Aging
14

the occasion-specific model and PMA factor loadings in the test-specific model
is consistent with the hypothesis that the age/cohort groups are selected from
a single population in which a common factor analysis model holds (Meredith,
1964), and implies that the structural differences in ® and ¥ reflect group
selection and not qualitative differences in factor structure. There is, more-
over, evidence of cross-occasion invariance in G factor loadings in the occasion-
specific models, indicating that structural invariance holds at the intraindividué]
level as well. Taken together, these results suggest that the PMA subtests are
indeed measuring the same latent factors within and between individuals of differ-
ent ages, at least in the somewhat select longitudinal samples studied here.

Under the assumption that cohort differences in factor structure are
minimal, there was some indication of a modest age-dedifferentiation process, as
reflected in higher communalities for Group 3 in the occasion-specific model and
in a higher factor intercorrelations for Group 3 in the test-specific model, which
is consistent with other findings (e.g., Cunningham, Note 1; Cunningham and Birren,
in press). Similar findings led Cunningham and Birren (in press) to suggest the
influence of an age-related slowing in cognitive speed. The present results would
seem to indicate that such slowing, if it is indeed the effect underlying age
selection, had not resulted in major qualitative differences in the mapping of
PMA variables onto their associated factors (which is parsimonious, since the PMA
tests were directly intended to tap both speed and power components; Thurstone
and Thurstone, 1941; 1949). It is possible, of course, that the trend toward
dedifferentiation found in this study could, if continued, ultimately lead to
qualitative changes in the factor structure, but this had apparently not occurred
in the present data. |

There is, in general, evidence for longitudinal stability in the structural

models tested in this study. Longitudinal stability was reflected in high covariances
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among G factors across occasions in the occasion-specific model, implying stability
in the ordering of individual differences over a 14 year period. Admittedly,
such stability may be specific to the type of long term longitudinal sample studied
here, which is known to be influenced by a high rate of experimental mortality
(e.g., Schaie, Labouvie, and Barrett, 1973) and may not generalize to the popula-
tion at large. Nevertheless, the magnitude of the cross-occasion covariances in
g was impressively high.

While there is evidence of structural stability, the occasion-specific
model with factor means indicates that not all groups show stability in level of
performance: the younger group showed mean increment, the middle-aged group showed
mean stability, and the 61der group showed mean decline; this overall pattern is
of course consistent with previous reports on level differences by Schaie and
coworkers (see Schaie, 1979). These results again support the notion that mean
intraindividual decrement in intelligence as measured by the PMA begins no earlier
than the fifth decade of life; stability in performance levels is seen prior to
this point.

While these interpretations are not new, of course, the critical point
is that they have been based on data from models which satisfy the suggestions of
Baltes and Nesselroade (1970, 1973) to demonstrate structural invariance while
investigating age changes in perfqrmance level.

An interesting variant in the stability/decline issue may be indicated
in the occasion-specific pattern of G variances in fg' In the single sample analy-
sis, large increases in G variance were found between the second and third
occasions, but this increase was found to be primarily specific to Group 3
in the multiple group analyses. Furthermore, this effect was eliminated when
Group 3 was redefined by eliminating two cohort groups with mean ages ranging

from 53-67, which altered the mean ages of Group 3 from 58-72 to 63-77 over the
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14 year longitudinal interval. One possible interpretation is that there is a
general transition from a stability pattern to a decrementa1 pattern in intra-
individual levels of performance from roughly age 55 to age 70, and which was
reflected in increasing G variance over occasions when Group 3 was formed by pool-
ing middle-aged subjects with old subjects. This hypothesis is admittedly specu-
lative and in need of a more rigorous test.

Finally, the results of this study point to the power and utility of
Joreskog and SGrbom's restricted maximum likelihood factor analytic techniques
for longitudinal factor analysis. In the present application, where G variances
differed over occasions, the estimation of standardized factors would have led to
the conclusion that the factor loadings varied over occasions. This study sug-
gests that it is only the standardized (or scaled) factor loadings which vary,
since the raw score loadings could be taken as invariant, and this pattern of
results has a substantially different interpretation with regard to structural
invariance than would habe been obtained using standardized factors. Thus COFAMM

(and LISREL) seem particularly well suited for the analysis of longitudinal data.
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FOOTNOTES

1. This paper reports part of the analyses from Dr. Hertzog's doctoral dis-
sertation. We thank William Meredith for his helpful suggestions on the models
testing cross-occasion invariance in factor pattern matrices.
2. Present location: Department of Psychology, University of Washington.
3. The x2 goodness of fit test is a produ¢t of the number of subjects and the
fitting function (F) at minimum. Hence absolute x? may be significant in large
samples even with relatively good fit, and should not be taken as the sole cri-
terion for accepting a model (Joreskog, 1971).
4. 1In the interest of brevity, several models tested are not presented in this
paper, and the parameters of other models alluded to in this paper are sometimes
not reported. Interested individuals are urged to contact the first author for
additional details.

5. The scaled solution is computed by weighting Ag, é_, and ©_ by the square

g g
root of the pooled factor variance for each element. The advantage is that scaled

factor loadings are of the same magnitude as standardized factor loadings (and
reduce to standardized factor loadings with a single group) while the scaled @Q
is on average a correlation matrix (i.e. E(diagég) = 1). Explicit scaling formulae

are given in J8reskog (1971) and Sérbom and J6reskog, (1976).
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Table 1
Reparameterized Sequential Sample for
Multiple Group Analysis

Cohort Age
Sample (mean birth year) (means) N
Group 1 30, 37, 44 109
1 1931 25, 32, 39 21
1 1924 32, 39, 46 26
2 1938 25, 32, 39 22
2 1931 32, 39, 46 40
Group 2 42, 49, 56 160
1 1917 39, 46, 53 27
1 1910 46, 53, 60 32
2 1924 39, 46, 53 51
2 1917 46, 53, 60 50
Group 3 58, 65, 72 143
1 1903 53, 60, 67 28
1 1896 60, 67, 74 15
1 1889 67, 74, 81 13
2 1910 ~ 53, 60, 67 48
2 21903 60, 67, 74 18
2 1896 67, 74, 81 21
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Table 2
Summary of Goodness of Fit Tests:
Occasion-Specific Models

Model X2 df P F Comparisons AX2 df p

H] 988.89 87 .000 3.070 - - - -
H2 84.13 72 .155 .261 H] - H2 904.76 15 <.001
H3 99.69 82 .090 .310 H3 - H4 6.41 2 <.05
H4 93.28 80 .147 .290 HZ - H4 9.16 8 >.05
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Table 3
Accepted Occasion-Specific
Model (H4)
a b C
A Ay A* |
|
v .935 (.061) 801 .80l  .871 §
S .645 (.069) .553 .553 .601 ?
R 1®( -) .857 .856 .932
N .610 (.071) .523 .523 .569
W .596 (.072) .511 .510 .555
4 Gy G, G5
6, .734 (.104)
6, .697 (.098) .733 (.104)
6, .735 (.102) .777 (.106) .868 (.116)
f
¢ Gy G, Gs
G, .950 1
Gy .921 .973 1

qrixed zero elements of matrix omitted.

b0ccas1‘on-spec1’f1‘c factor loadings (invariant over occasions).

d
Standard errors in parentheses.

e

Fixed parameter.

f

Scaled factor correlation matrix.

g
Unique variances for subtests (number denotes occasion).

CScaled factor loadings on occasion-specific factors (Gl, GZ’ 63).

hCovariances of unique components of identical subtests across

occasions {(numbers denote occasions).




Table 3 (Cont‘d.)

?’a Var lg var 29 var 39 v
v 2319 (.051) .382 (.056) 271 (.046) '»
S 762 (.089) 635 (.075) _634 (.075) ‘

: R 256 (.052) 259 (.051) .128 (.081)

N 708 (.083) _775 (.090) .90 (.080)

| W 808 (.094) - 786 (.091) .93 (.080)

cov 12" cov 13" cov 23"

‘\ v 141 (.083) .141 (.040) .172 (.043)

% S 448 (.069) 406 (.067) (431 (.064)

R 1105 (.043) _062 (.038) .082 (.039)

N .593 (.078) .605 (.076) .590 (.077)

562 (.080) (498 (.074) 518 (.074)

w
\ . ‘
! 3rixed zero elements of matrix omi tted. 'l
bOccasion-spec"lfic factor 1oadings (_invariant over occasions). |
. Cscaled factor 1oadings on occasion-specific factors (Gl’ GZ’ 63). \

dSt:andard errors in parentheses. _ \

erixed parameter. =‘

fSca]ed factor correlation matrix.

h(‘.ovarianc:e's. of unique components of jdentical subtests across

]
| Sunique yariances for subtests (number denotes occasion). \

occasions (numbers denote occasions).
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Table 6

Results from Accepted Multiple Groups
Occasion-Specific Model (HG)

[

FsZoxun<
[
[}

P~ S P P

.468 (.089)
G, .371 (.075) .374 (.076)
Gy .372 (.074) .333 (.068) .341 (.070)

7
6, . .523 (.088)
6, .503 (.079) .518 (.082)
} 6, .525 (.082) .522 (.081) .572 (.088)
&

.735 (.112)
6, .700 (.107) .746 (.116) :
G .737 (.113) .804 (.120) .941 (.137) '

, 30ccasion-specific factor loadings (invariant over groups and
: occasions); fixed zero elements omitted. ‘

bStandard errors in parentheses.

Crixed parameters.

dFactor covariance matrix (subscripts denote group).
€pesidual covariance matrix (subscripts denote group).

fresidual variances (unique variances); number denotes occasion.

9covariance of residual (unique) components of jdentical subtests;
numbers denote occasions.
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Table 6 (Cont'd.)

e
¥
gl Var 1f Var 2f Var 3f
v .411 (.078) .333 (.067) .360 (.067)
S .953 (.135) 1.078 5.151) 1.099 (.154)
R .385 (.077) .500 (.088) .415 (.076)
N .691 (.105) .717 (.107) .673 (.100)
W .721 (.105) .920 (.131) .976 (.138)
Cov 129 Cov 139 Cov 239
v .287 (.064) .270 (.064) .257 (.060)
S .814 (.129) .783 (.128) .797 (.134)
R .212 §.067; .197 2.063) .264 (.069)
N .548 (.095 .575 (.094) .554 (.094)
W .466 (.096) .453 (.097) .712 (.119)

aOccasiOn-specific factor loadings (invariant over groups and
occasions); fixed zero elements omitted.

bStandar-d errors in parentheses.
CFixed parameters.
dractor covariance matrix (subscripts denote group).

€Residual covariance matrix (subscripts denote group).
f

Residual variances (unique variances); number denotes occasion.

9covariance of residual (unique) components of identical subtests;

numbers denote occasions.




f

22 . Var 1 Var 2 var 3 i
v .367 (060) .412 (.064) .335 (.057)
S .929 (.108) .784 (.092) .804 (.094) i
R .481 %.072) .389 (.062) .388 (.063) f
N .716 (.088) .792 i.091) .648 (.081) ‘
W .824 (.098) .688 (.082) .604 (.073)
Cov 129 cov 139 cov 239
v .269 ?.055; 211 (.051) 227 (.052)
S .582 (.086 .447 (.081) 502 (.078)
R .270 ( 058) 270 (.058) .245 (.054
N .609 (.083) .565 (.078 .572 (.079)
W .512 (.077) 464 (.072 .463 (.068)

3gccasion-specific factor loadings (invariant over groups and
occasions); fixed zero elements omitted.

bStandard errors in parenthese.

Crixed parameters.

dFactor covariance matrix (subscripts denote group).

€pesidual covariance matrix (subscripts denote group).

fResidu:-ﬂ variances (unique variances); number denotes occasion.

9covariance of residual (unique) components of jdentical subtests;
numbers denote occasions.

e g e A ek SRR LS, iyt e ST Bk SRR gt
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Table 6 (Cont'd)

23 Var 1 Var 2 Var 3
v .441 (.071) .565 (.083) .477 (.075)
S .703 (.088) .652 (.081) .558 (.071)
R .331 (.061) .379 (.065) .260 (.055)
N .587 (.078) .625 (.082) .514 (.070)
W .805 (.101) .792 (.099) .681 (.086)
Cov 129 Cov 139 Cov 239
v .164 z.oso) .161 é.oss) .245 §.064)
S .293 (.065) .331 (.063) .297 (.060)
R .157 §.051§ .116 (.046) .167 2.osog
N .464 (.071 .391 (.064) .405 (.066
W .559 (.086) .509 (.080) .508 (.080)

aOccasion-specific factor loadings (invariant over groups and
occasions); fixed zero elements omitted.

bStandard errors in parentheses.
CFixed parameter,

dractor covariance matrix (subscripts denote group).

€Residual covariance matrix (subscripts denote group).

fResidua] variances (unique variances); number denotes occasion.

9Ycovariance of residual (unique) components of identical subtests;
numbers denote occasions.




PRIy

e

A* 6y
v 754
S 837
R 763
N 596
W 481
b
*
o N 6
6 804
6, 650
b G4 609
3¢
)
6, 899 -
6, 881
64 861
o0
-3 6 1.262
6 1.226

3¢ixed zero

elements omitted.

.739
.428
.748
.584
.472

.670
.558

.926
.874

.790
.458
.799
.625
.504

.534

.894

1.473
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Table 7 (Cont'd) ,

yrC
~9 b
WT ' S R N W
Occasion
1 474 .862 - .451 .707 .795
2 477 .898 .572 .759 .861
; 3 .519 .908 .549 .763 .878
: b
‘ v
| Occasion
1 .418 .845 .479 .692 .798
. 2 .449 .822 .429 .701 .770
3 .375 .810 .404 .650 727
b
3 .
Occasion
1 . 381 .745 .311 .567 734
2 .437 727 .337 .579 727
3 .342 .644 .216 .472 .645

§ 8Fixed zero elements omitted.
bSubscript denotes group.

. CMatrix of unique variances (scaled separately for each group)
Unique variances have been rescaled as.a proportion of the
estimated population variances from Eg (variances of the

! observed variables for each group are equal to 1.0).

T R N B A T N R Dl 2 MR ™ 50 %074 TR T O ST 5 0 P 4 SO o P [ A 3 AR v o B R, Ko
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Occasion-Specific Model:
Rescaled Correlation Matrices

Table 8

a

" &
Gl 1
62 .886
G3 .929

Q**
G, 1
G, . 966
G3 .960

o
G4 1
GZ . 945
G3 .887

.933

.961

.952

Occasion

G

3

3correlation matrix among G factors (subscript denotes group).

b

omitted.

Correlation matrix among unique (residual) elements (subscript
denotes group). Diagonal unities and fixed zero correlations

CCorrelation among residuals of same subtest at different occasions

(subscripts denote occasions).
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Table 8 (Cont'd)

b c c c
4 2 M3 r23
v .776 .831 .742
s .803 -898 1732
R .483 618 "580
N o .779 -929 .798
W .572 1632 "751
¥y*
Vo .692 .731 .611
S .682 1655 1632
R .624 -787 .631
N .836 -883 -825
W .680 "751 "718
yir |
v .329 .490 .472
s .433 "724 1492
R .443 -493 1532
N .766 1802 715
W .700 ©796 1692

3correlation matrix among G factors (subscript denotes group).

bCorre]ation matrix among unique (residual) elements (subscript
denotes group). Diagonal unities and fixed zero correlations
omi tted.

Ccorrelation among residuals of same subtest at different occasions
-(subscripts denote occasions).
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T T - Table é T

x2 Statistics for Number of Factors

Number of 2 2
Factors X df Ay df T-L
Group 1
1 - 797.35 90 - - .30
2 532.77 76 264.58 14 47
3 290.15 63 242.62 13 .68
4 164.54 51 125.61 12 .80
5 74.76 40 89.78 11 .92
6 45.78 30 28.98 10 .95
7 26.38 21 19.40 9 .98
Group 2
1 1072.12 90 - - .40
2 294.29 76 377.83 14 .55 I
3 425.01 63 269.18 13 .68 i
4 199.60 51 225.51 12 .84 ;
5 38.18 40 161.42 11 1.00 :
6 20.17 30 17.47 10 1.02 _
7 9.48 21 11.23 9 1.03 :
Group 3 i
1 659.56 90 - - .59
2 465.98 76 193.58 14 .67
3 237.82 63 228.16 13 .82
4 142,37 51 95.45 12 .88
5 80.38 40 61.99 11 .93
6 35.58 - 30 44.80 10 .99
7 11.88 21 23.70 9 1.03

Abbreviations: df = degrees of function;
Ax2

T-L

in X2.
change in *7;
Tucker-Lewis reliability coefficient
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Table 11

Multiple Groups Test-Specific Model:
Scaled Solution

A v S R N W
Occasions
1 . .895 .812 .861 .921 .808
2 .891 .864 .889 .914 .883
3 .864 .808 .912 .916 .873
b
*
1
v .698
S .111 1.345
R .408 .461 .762
N .324 .276 425 .990
W .468 .042 .392 351 1.114
b
*
%
v .974
S .284 .944
R .719 477 1.051
N .407 .237 . 445 .967
W .475 .036 .443 .287 .899
b
*
3
v 1.259
S .595 .800
R .997 616  1.124
N .764 .483 679 1.045
W .633 .263 .543 466 1.027

35caled test-specific factor loadings.

bSubscript denotes grodp; the weighted average of ¢ is a ;
correlation matrix. ~9 ;

Csubscript denotes group; unique variances expressed as a proportion
of estimated observed variances from £ (observed variances scaled
to unity). ~9
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Table 11 (Cont'd.)

\vlc v S R N W
Occasion
1 .250 .183 .304 .162 .374
2 .140 .195 .329 .212 .209 .
3 .190 .272 .219 .109 .257 ;
c H
¥s
Occasion
1 .137 .192 .226 .137 .373
2 .165 .199 .162 .149 .219
3 .199 .402 .147 .141 .196
c
¥3
Occasion
1 274 .445 .199 .165 .323
2 .282 .368 .182 .153 .231
3 .271 .363 .161 .206 .241

3scaled test- specific factor loadings.

bSubscript denotes group; the weighted average of ¢

correlation matrix. g

cSubscript denotes group; unique variances expressed as a proport1on
of estimated observed variances from Z (observed variances scaled
to unity).
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‘Table 12

Test-Specific Model:
Standardized ¢g

@;*b v S R N W

v 1 '

s .115 1

R .559  .455 1

N .39  .239  .489 1

W 531  .034  .425  .334 1
o5

v 1

S .206 1

R 711 .479 1

N .219  .248  .441 1

W .508  .039  .439  .308 1
Q**b
~3

v 1

S .593 1

R .838  .650 1

N .666  .528  .627 1

W .557  .290  .505  .450 1

a? ** defined as gg scaled to correlation matrix (¢g standardized
separately for each group.

bSubscript denotes group.

e et = < ——— e
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Table 13

Occasion-Specific Model:
Model with Factor Means?

99 G G, Gy
o0 .28 (.107)°  .452 (.102) 501 (.102)
% o (=) 0 (=) 0 ( -)
o, -.729 (.109)  -.836 (.110) 1.152 (.117)
u® 1 2 3

v 4.252 4.295 4.151
s 2.312 2.357 2.335
R 2.982 2.972 2.994
N 2.570 2.557 2.563
W 3.750 3.752 3.690
A

.878 (.040)

656 (0s1)
12000 (- )

1566 (.040)

1522 (.041)

8 matrices omitted.

bSubscript denotes group.

Cstandard errors in parentheses.

dMeans for group 2 fixed at 0.

€Matrix of grand means (fnvariant over groups).

fOccasion-specif'ic factor loadings on G (invariant over groups
and occasions).
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Table 13 (Cont'd.)
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%
1 527 &.101)
2 .416 (.086)
3 .420 (.083)
7
1 .616 i.oga)
2 .592 (.088)
3 .619 (.091)
&
1 .811 (.119)
2 .759 (.112)
3 .793 (.118)

.417 (.087)
.375 (.078)

.609 (.092)
.614 (.090)

.824 (.123)
.879 (.125)

.386 (.080)

.673 (.098)

1.020 (.142)

aw matrices omi tted.
b

Subscript denotes group.

Cstandard errors in parentheses.

d

Means for group 2 fixed at 0.

€Matrix of grand means (invariant over groups).

f0ccas1'on-spec1'f1c factor loadings on G

and occasions).

(invariant over groups
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Figure 1 continued

Test-Specific A
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Figure 2

G Factor Means from Qg

30 40 50 60 70 80



